• Title/Summary/Keyword: Total Harmonics Distortion (THD)

Search Result 87, Processing Time 0.022 seconds

Harmonics Modelling for Distribution System (배전시스템 고조파 모델링에 관한 연구)

  • Han, Hyeng-J.;Wang, Yong-P.;Chong, Hyeng-H.;Sung, Byung-H.;Park, Hee-C.;Park, In-P.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.205-207
    • /
    • 2005
  • In this paper, the Point of Common Coupling (PCC) is selected to analyze harmonic characteristic of distribution system by IEC 61000 - 3 - 6 in Electromagnetic Compatibility(EMC). Harmonic voltage and current were measured at the PCC of real distribution system. Harmonic distribution, nonlinear load component and Total Harmonic Distortion(THD) were verified by measurement. The effective and accurate modelling of real distribution system were proved through a analysis of harmonic impedance, voltage and current in steady-state. Harmonic transfer characteristic in distribution system were summarized and investigated through a analysis of harmonic voltage and harmonic current in harmonic current source.

  • PDF

A simple 3-phase inverter topology to improve power conversion efficiency

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.25-26
    • /
    • 2014
  • Renewable energy sources such as wind and solar power are free and can be easily harvested everywhere. However, one of the biggest problems when using this kind of energy source is how to increase the efficiency of power conversion system. This paper introduces a modified 3-phase inverter in order to increase the power conversion efficiency. By adding 3 bi-directional switches at output of the inverter, the current flow back DC source during zero state is prevented to minimize leakage current, so that the efficiency of whole system is increased. The proposed topology also improves the power quality to satisfy the total harmonics distortion (THD) requirement. In order to verify the effectiveness of the proposed topology, simulation results are carried out using Simulink in MATLAB.

  • PDF

Simulator Development for Evaluating Compensation Performance. of Active Power Filter using Three-Dimensional Space Current Co-ordinate (3차원(次元) 전류좌표(電流座標)에 의한 능동전력(能動電力)필터의 보상성능(補償性能) 평가(評價)를 위한 시뮬레이터 개발(開發))

  • Lim, Young-Choel;Jung, Young-Gook;Na, Suk-Hwan;Choi, Chan-Hak;Chang, Young-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.337-341
    • /
    • 1994
  • This paper describes an effort to develop a simulator of Active Power Filter (APF) by three dimentional(3-D) space current co-ordinate. System current is represented by 3-D vector composed of three current components - active, reactive and distorted. %THD (%Total Harmonics Distortion) can be converted to height-angle of system current vector and power factor can be defined on 3-D space current co-ordinate without loss of generality. Current of APF and power system can be analyzed by 3-D visualization of current vector trajectory. So, the computer simulation results show that the proposed method by 3-D space current co-ordinate make up for disadvantages of performance evaluation on time / frequency domain.

  • PDF

Open Fault Diagnosis Using ANN of Adaptive-Linear-Neuron Structure for Three-Phase PWM Converter (Adaptive-Linear-Neuron 구조의 ANN을 이용한 3상 PWM 컨버터의 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.136-137
    • /
    • 2019
  • 본 논문에서는 ADALINE (Adaptive-Linear-Neuron) 구조의 ANN(Artificial Neural Network)을 이용한 3상 PWM 컨버터의 개방고장 진단 방법에 대해 제안한다. 3상 PMW 컨버터에서 스위치의 개방고장이 발생한 경우 보호회로에 의해 시스템이 중단되지 않으며, 개방고장으로 인한 상전류의 고조파와 직류 성분에 의해 주변 기기에 고장에 의한 파급효과가 나타날 수 있다. 이에 본 논문에서는 ADALINE을 이용하여 각 상의 THD(Total Harmonics Distortion)와 직류 성분 얻고 대소비교를 통해 개방고장이 발생한 스위치를 진단하는 방법에 대해 제안한다.

  • PDF

Design of Wound Rotor Synchronous Machine for ISG and Performance Comparison with Interior Permanent Magnet Synchronous Machine (ISG용 권선형 동기기의 설계 및 IPMSM과 특성 비교)

  • Lee, Dongsu;Jeong, Yun-Ho;Jung, Sang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.1
    • /
    • pp.37-42
    • /
    • 2013
  • This paper deals with Wound Rotor Synchronous Motor (WRSM) purposely designed for Integrated Starter and Generator (ISG) installed in 42V automotive electrical system. Not only design objective and specifications of WRSM, but its adaptive design to minimize torque ripple and back-EMF Total Harmonics Distortion (THD) are considered. Furthermore, design characteristics of designed prototype have been investigated numerically in terms of torque, back EMF, loss, and efficiency, which are verified by performance comparison with Interior Permanent Magnet Synchronous Machine based on Finite Element Analysis (FEA).

Harmonic Analysis on the Korean AC Railway System

  • Lee, Han-Min;Kim, Gil-Dong;Oh, Kwang-Hae;Jang, Gil-Soo;Kwon, Sae-Hyuk
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.235-243
    • /
    • 2005
  • Line constants of the catenary system are estimated. The harmonic current that the Korean Train Express (KTX) injects into the catenary is measured to precisely analyze the harmonic effects. The Korean high-speed railway system is modeled by estimated and measured results. The system model is applied for predicting the harmonic effects. The simulation results from the system model are compared to field test data concerning the total harmonic distortion (THD). The reliability of the system model is verified.

Optimal Design for Hybrid Active Power Filter Using Particle Swarm Optimization

  • Alloui, Nada;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • This paper introduces a design and a simulation of a hybrid active power filter (HAPF) for harmonics reduction given an ideal supply source. The synchronous reference frame method has been used here to identify the reference currents. The proposed HAPF uses a new artificial- intelligence technique called Particle Swarm Optimization (PSO) for tuning the parameters of a proportional and integral controller called PI-PSO. The PI-PSO controller is used to archive optimality for the DC-link voltage of the HAPF-inverter. The hysteresis non-linear current control method is used in this approach to compare the extracted reference and the actual currents in order to generate the pulse gate required for the HAPF. Results obtained by simulations with Matlab/Simuling show that the proposed approach is very flexible and effective for eliminating harmonic currents generated by the non-linear load with the HAPF based PSO tuning.

Multiple Switches Open-Fault Diagnosis Using ANNs of Two-Step Structure for Three-Phase PWM Converters (Two-Step 구조의 인공신경망을 이용한 3상 PWM 컨버터의 다중 스위치 개방고장 진단)

  • Kim, Won-Jae;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.282-283
    • /
    • 2020
  • 3상 컨버터에서 스위치의 개방고장이 발생한 경우 고장 전류에 직류 및 고조파 성분이 발생할 수 있으며, 보호회로에 의한 고장 감지가 어려우므로 주변 기기에 2차 고장이 발생할 수 있다. 단일 및 이중 스위치 개방고장의 경우 21가지 고장 모드가 존재한다. 본 논문에서는 이러한 고장 모드를 진단하기 위해 정지 좌표계 d-q축 전류의 직류 및 고조파 성분을 활용하는 two-step 구조의 ANN(Artificial Neural Network)을 제안한다. 고장 시에 발생된 직류 및 고조파 성분 전류는 ADALINE(Adaptive-Linear Neuron)을 통해 얻는다. 고장 진단의 첫 번째 단계에서는 직류 성분을 기반으로 ANN을 이용하여 고장모드를 6개 영역으로 분류한다. 두 번째 단계에서는 6개의 각 영역에서 직류 성분과 전류의 THD(Total Harmonics Distortion)를 기반으로 ANN을 이용하여 개방고장이 발생한 스위치를 진단한다. 제안된 Two-step 방법으로 고장을 진단하므로써 간단한 구조로 ANN의 설계가 가능하다. 3.7kW급 3상 PWM 컨버터로 실험을 통해 제안된 방법의 효용성을 검증하였다.

  • PDF

Selection of Voltage Vectors in Three-Level Five-Phase Direct Torque Control for Performance Improvement

  • Tatte, Yogesh N.;Aware, Mohan V.
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2162-2172
    • /
    • 2016
  • This paper presents a Direct Torque Control (DTC) strategy for the five-phase induction motor driven by a three-level five-phase inverter in order to improve the performance of the five-phase induction motor. In the proposed DTC technique, only 22 voltage vectors out of 243 available voltage vectors in a three-level five-phase inverter are selected and are divided in 10 sectors each with a width of $36^{\circ}$. The four different DTC combinations (DTC-I, II, III and IV) for a three-level five-phase induction motor drive are investigated for improving the performance of five-phase induction motor. All four of the DTC strategies utilize a combination of the same large and zero voltage vectors, but with different medium voltage vectors. Out of these four techniques, DTC-II gives the best performance when compared to the others. This DTC-II technique is analyzed in detail for improvements in the performance of five-phase induction motor in terms of torque ripple, x-y stator flux and Total Harmonics Distortion (THD) of the stator phase current when compared to its two-level counterparts. To verify the effectiveness of the proposed three-level five-phase DTC control strategy, a DSP based experimental system is build. Simulation and experimental results are provided in order to validate the proposed DTC technique.

Cascaded H-Bridge Five Level Inverter for Grid Connected PV System using PID Controller

  • Sivagamasundari, M.S.;Mary, P. Melba
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.451-462
    • /
    • 2016
  • Photovoltaic energy conversion becomes main focus of many researches due to its promising potential as source for future electricity and has many advantages than the other alternative energy sources like wind, solar, ocean, biomass, geothermal etc. In Photovoltaic power generation multilevel inverters play a vital role in power conversion. The three different topologies, diode-clamped (neutral-point clamped) inverter, capacitor-clamped (flying capacitor) inverter and cascaded h-bridge multilevel inverter are widely used in these multilevel inverters. Among the three topologies, cascaded h-bridge multilevel inverter is more suitable for photovoltaic applications since each pv array can act as a separate dc source for each h-bridge module. This paper presents a single phase Cascaded H-bridge five level inverter for grid-connected photovoltaic application using sinusoidal pulse width modulation technique. This inverter output voltage waveform reduces the harmonics in the generated current and the filtering effort at the input. The control strategy allows the independent control of each dc-link voltages and tracks the maximum power point of PV strings. This topology can inject to the grid sinusoidal input currents with unity power factor and achieves low harmonic distortion. A PID control algorithm is implemented in Arm Processor LPC2148. The validity of the proposed inverter is verified through simulation and is implemented in a single phase 100W prototype. The results of hardware are compared with simulation results. The proposed system offers improved performance over conventional three level inverter in terms of THD.