• Title/Summary/Keyword: Torsional failure

Search Result 106, Processing Time 0.022 seconds

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

Using an appropriate rotation-based criterion to account for torsional irregularity in reinforced concrete buildings

  • Akshara S P;M Abdul Akbar;T M Madhavan Pillai;Rakesh Pasunuti;Renil Sabhadiya
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.349-361
    • /
    • 2024
  • Excessive torsional behaviour is one of the major reasons for failure of buildings, as inferred from past earthquakes. Numerous seismic codes across the world specify a displacement-based or drift-based criterion for classifying buildings as torsionally irregular. In recent years, quite a few researchers have pointed out some of the inherent deficiencies associated with the current codal guidelines on torsional irregularity. This short communication paper aims to envisage the need for a revision of the displacement-based guidelines on torsional irregularity, and further highlight the appropriateness of a rotation-based criterion. A set of 6 reinforced concrete building models with asymmetric shear walls are analysed using ETABS v18.0.2, by varying the number of stories from 1 to 9, and the torsional irregularity coefficient of various stories is calculated using the displacement-based formula. Since rotation about the vertical axis is a direct indication of the twist experienced by a building, the calculated torsional irregularity coefficients of all stories are compared with the corresponding floor rotations. The conflicting results obtained for the torsional irregularity coefficients are projected through five categories, namely mismatch with floor rotations, inconsistency in trend, lack of clarity in incorporation of negative values, sensitivity to low values of displacement and error conceived in the mathematical formulation. The findings indicate that the irregularity coefficient does not accurately represent the torsional behaviour of buildings in a realistic sense. The Indian seismic code-based values of 1.2 and 1.4, which are used to characterize buildings as torsionally irregular are observed to be highly sensitive to the numerical values of displacements, rather than the actual degree of rotation. The study thus emphasizes the revision of current guidelines based on a more relevant rotation-based or eccentricity-based approach.

Strength characteristics of transversely isotropic rock materials

  • Yang, Xue-Qiang;Zhang, Li-Juan;Ji, Xiao-Ming
    • Geomechanics and Engineering
    • /
    • v.5 no.1
    • /
    • pp.71-86
    • /
    • 2013
  • For rock materials, a transversely isotropic failure criterion established through the extended Lade-Duncan failure criterion incorporating an anisotropic state scalar parameter, which is a joint invariant of deviatoric microstructure fabric tensor and normalized deviatoric stress tensor, is verified with the results of triaxial compressive data on Tournemire shale. For torsional shear mode with $0{\leq}b{\leq}0.75$, rock shear strengths decrease with ${\alpha}$ increasing until the rock shear strength approaches minimum value at ${\alpha}{\approx}40^{\circ}$, and after this point, the rock shear strengths increase as ${\alpha}$ increases further. For the torsional shear mode with b > 0.75, rock shear strengths are almost constant for ${\alpha}{\leq}40^{\circ}$, but it increases with increase in ${\alpha}$ afterwards. The rock shear strength variation against ${\alpha}$ agrees with shear strength changing tendency of heavily OCR natural London Clays tested before. Prediction results show that the transversely isotropic failure criterion proposed in the paper is reasonable.

Torsional strengthening of RC beams using stainless steel wire mesh -Experimental and numerical study

  • Patel, Paresh V.;Raiyani, Sunil D.;Shah, Paurin J.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.391-401
    • /
    • 2018
  • Locally available Stainless Steel Wire Mesh (SSWM) bonded on a concrete surface with an epoxy resin is explored as an alternative method for the torsional strengthening of Reinforced Concrete (RC) beam in the present study. An experiment is conducted to understand the behavior of RC beams strengthened with a different configuration of SSWM wrapping subjected to pure torsion. The experimental investigation comprises of testing fourteen RC beams with cross section of $150mm{\times}150mm$ and length 1300 mm. The beams are reinforced with 4-10 mm diameter longitudinal bars and 2 leg-8 mm diameter stirrups at 150 mm c/c. Two beams without SSWM strengthening are used as control specimens and twelve beams are externally strengthened by six different SSWM wrapping configurations. The torsional moment and twist at first crack and at an ultimate stage as well as torque-twist behavior of SSWM strengthened specimens are compared with control specimens. Also the failure modes of the beams are observed. The rectangular beams strengthened with corner and diagonal strip wrapping configuration exhibited better enhancement in torsional capacity compared to other wrapping configurations. The numerical simulation of SSWM strengthened RC beam under pure torsion is carried out using finite element based software ABAQUS. Results of nonlinear finite element analysis are found in good agreement with experimental results.

Comparative analysis of torsional and cyclic fatigue resistance of ProGlider, WaveOne Gold Glider, and TruNatomy Glider in simulated curved canal

  • Pedro de Souza Dias;Augusto Shoji Kato;Carlos Eduardo da Silveira Bueno;Rodrigo Ricci Vivan;Marco Antonio Hungaro Duarte ;Pedro Henrique Souza Calefi ;Rina Andrea Pelegrine
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.1
    • /
    • pp.4.1-4.10
    • /
    • 2023
  • Objectives: This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG). Materials and Methods: A total of 15 instruments of each glide path system (n = 15) were used for each test. A custom-made device simulating an angle of 90° and a radius of 5 millimeters was used to assess cyclic fatigue resistance, with calculation of number of cycles to failure. Torsional fatigue resistance was assessed by maximum torque and angle of rotation. Fractured instruments were examined by scanning electron microscopy (SEM). Data were analyzed with Shapiro-Wilk and Kruskal-Wallis tests, and the significance level was set at 5%. Results: The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (p < 0.05). In the torsional fatigue test, the TNG group showed a higher angle of rotation, followed by the PG and WGG groups (p < 0.05). The TNG group was superior to the PG group in torsional resistance (p < 0.05). SEM analysis revealed ductile morphology, typical of the 2 fracture modes: cyclic fatigue and torsional fatigue. Conclusions: Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments' clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.

The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation

  • Acar, Nihat;Karakasli, Ahmet;Karaarslan, Ahmet A.;Ozcanhan, Mehmet Hilal;Ertem, Fatih;Erduran, Mehmet
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.425-429
    • /
    • 2016
  • Objective : Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, $20^{\circ}$ kyphotic, and $20^{\circ}$ lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. Methods : The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of $5mm\;min^{-1}$, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of $0.5^{\circ}\;s^{-1}$ to an end point of $5.0^{\circ}$, in a torsion testing machine. Results : Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. Conclusion : We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.

Minimum Torsional Reinforcement Ratio of Reinforced Concrete Members for Safe Design (안전한 설계를 위한 철근콘크리트 부재의 최소비틀림철근비)

  • Kim, KangSu;Lee, DeuckHang;Park, Min-Kook;Lee, Jung-Yoon;Ju, HyunJin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.641-648
    • /
    • 2013
  • Current design codes regulate the minimum torsional reinforcement requirement for reinforced concrete members to prevent their brittle failure. The minimum torsional reinforcement ratio specified in the current national code and ACI318-11, however, have problems in the minimum longitudinal reinforcement ratio for torsion, the equilibrium condition in space truss model, and a marginal strength, etc. Thus, in order to overcome such shortcomings, this study presents a rational equation for minimum torsional reinforcement ratio that can provide a sufficient margin of safety in design. The minimum torsional reinforcement ratio proposed in this study was compared to the test results available in literature, and it was confirmed that it gave a proper margin of safety for all specimens studied in this paper.

Fatigue Strength Analysis of Propulsion Shafting System with Two Stroke Low Speed Diesel Engine by Torsional Vibration in Frequency Domain (주파수 영역에서 비틀림진동에 의한 저속 2행정 디젤엔진을 갖는 추진축계의 피로강도 해석)

  • Kim, S.H.;Lee, D.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.416-422
    • /
    • 2007
  • Prime movers in most large merchant ships adapt two stroke low speed diesel engine which has higher efficiency, mobility and durability. However, severe torsional vibration in these diesel engines may be induced by higher fluctuation of combustion pressures. Consequently, it may lead sometimes to propulsion shafting failure due to the accumulated fatigue stresses. Shaft fatigue strength analysis had been done traditionally in time domain but this method is complicated and difficult in analysing bi-modal vibration system such as the case of cylinder misfiring condition. In this paper authors introduce an assessment method of fatigue strength estimation for propulsion shafting system with two stroke low speed diesel engine in the frequency domain.

  • PDF

Behavior of CFRP strengthened RC multicell box girders under torsion

  • Majeed, Abeer A.;Allawi, Abbas A.;Chai, Kian H.;Badaruzzam, Hameedon W. Wan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.397-406
    • /
    • 2017
  • The use of fiber reinforced polymer (FRP) for torsional strengthening of reinforced concrete (RC) single cell box beams has been analyzed considerably by researchers worldwide. However, little attention has been paid to torsional strengthening of multicell box girders in terms of both experimental and numerical research. This paper reports the experimental work in an overall investigation for torsional strengthening of multicell box section RC girders with externally-bonded Carbon Fiber Reinforced Polymer CFRP strips. Numerical work was carried out using non-linear finite element modeling (FEM). Good agreement in terms of torque-twist behavior, steel and CFRP reinforcement responses, and crack patterns was achieved. The unique failure modes of all the specimens were modeled correctly as well.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.