• Title/Summary/Keyword: Torsional Vibration Analysis

Search Result 303, Processing Time 0.032 seconds

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.

A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine (선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구)

  • Lee, D.C.;Kang, D.S.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.359-368
    • /
    • 2006
  • The trend on marine diesel engine productions and refinements has led to a higher mean effective pressure and thermal efficiency. These resulted in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. In view of this. the crankshaft should be able to withstand the dynamic stresses caused by load variations. Different factors including size, material and stress concentration factors should also be considered to ensure the reliability of the shafting system. As such, crankshaft must be designed and compacted within its fatigue strength. In this paper, the strength analysis of crankshaft Is carried out by: simplified method recommended by IACS(International Association Classification Societies) M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are then compared.

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter (헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정)

  • Yun, Chul Yong;Kim, Deog-kwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

Multi-body Dynamic Analysis for the Drivetrain System of a Large Wind Turbine Based on GL 2010 (GL 2010 기반 대형 풍력터빈 드라이브트레인 시스템 다물체 동역학 해석기법)

  • Jeong, Dae-Ha;Kim, Dong-Hyun;Kim, Myung-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.363-373
    • /
    • 2014
  • In this study, computational multi-body dynamic analyses for the drivetrain system of a 5 MW class offshore wind turbine have been conducted using efficient equivalent modeling technique based on the design guideline of GL 2010. The present drivetrain system is originally modeled and its related system data is adopted from the NREL 5 MW wind turbine model. Efficient computational method for the drivetrain system dynamics is proposed based on an international guideline for the certification of wind turbine. Structural dynamic behaviors of drivetrain system with blade, hub, shaft, gearbox, supports, brake disk, coupling, and electric generator have been analyzed and the results for natural frequency and equivalent torsional stiffness of the drivetrain system are presented in detail. It is finally shown that the present multi-body dynamic analysis method gives good agreement with the previous results of the 5 MW class wind turbine system.

Analysis of the Crankshaft Speed Fluctuation in Intra-Cycle (사이클 내 크랭크축 각속도의 변동 해석)

  • 배상수;임인건;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.166-172
    • /
    • 1996
  • This paper presents the characteristics of the crankshaft speed fluctuations. To analyze them, the speed waveforms were measured both at the flywheel and at the front end of the engine. The speed waveform measured at the flywheel shows better result than at the front end one, because of the torsional vibration and the auxiliary components. And the patterns of the speed fluctuations are classified into three region, such as low load, middle load and high load region with the variations of the loads. Additionally, as the engine speeds increase and the loads decrease, the analysis of the speed becomes more difficult due to lower variation of the speed. And in all the regions, the main frequency component of the speed fluctuation is firing frequency.

  • PDF

A Theoretical Study on the Dynamic Characteristics of Damping Flexible Coupling(I) (유체감쇠 커플링의 동특성에 관한 이론적 연구(I))

  • 김종수;제양규;정재현;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.11-22
    • /
    • 1994
  • The present works are the theoretical results of the study to develope a damping flexible coupling which has a high performance of control for the torsional vibrations of power shafts in a large machinery. It is established the analysis scheme of the multiple-leaf spring, to obtain the static coefficient of stiffness of the coupling. Also, the dynamic coefficient of stiffness and the damping coefficient of the coupling are indentified through the flow analysis for a induced flow of working fluid by the deflection of multiple-leaf springs. This paper dealt with damping contributions by the friction between each plate of the multiple-leaf spring. In this paper, it is found that the dynamic characteristics of the damping flexible coupling are strongly dependent on the stiffness and the number of the multiple-leaf spring, and also vary with the viscosity of working fluid and the vibration speed of the inner star.

  • PDF

A Study on Structural Analysis of an Aluminum Electric Motor Car with a Modular Front End made of composite materials (모듈형 복합재 전두부가 적용된 전동차의 구조해석 연구)

  • 노규석;구정서;이현순
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.247-252
    • /
    • 2001
  • In this study, an aluminum electric motor car with a modular front end made of composite materials is numerically evaluated applying the standard specifications for the urban EMU(Electric Multiple Unit) train. Structural analyses under compressive load, torsional load and free vibration satisfy the standard specifications, but analysis under normal load doesn't. By the way, the aluminum bodyshell of the car except the modular front end is almost same to that of the Korean standard EMU, which satisfy the standard specifications. It is presumed that the stiffness of the modular front end made of composite materials haves some influence on the strength of the aluminum bodyshell.

  • PDF