• Title/Summary/Keyword: Torsional Damping

Search Result 136, Processing Time 0.023 seconds

Structural Damage Detection through System Identification (시스템 동정을 통한 구조물의 결함 탐지)

  • Koh, Bong-Hwan;Nagarajaiah, S.;Phan, M.Q.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1223-1228
    • /
    • 2006
  • This paper presents an experimental investigation of a recently developed Kronecker Product (KP) method to determine the type, location, and intensity of structural damage from an identified state-space model of the system. Although this inverse problem appears to be highly nonlinear, the system mass, stiffness, and damping matrices are identified through a series of transformations, and with the aid of the Kronecker product, only linear operations are involved in the process. Since a state-space model can be identified directly from input-output data, an initial finite element model and/or model updating are not required. The test structure is a two-degree-of-freedom torsional system in which mass and stiffness are arbitrarily adjustable to simulate various conditions of structural damage. This simple apparatus demonstrates the capability of the damage detection method by not only identifying the location and the extent of the damage, but also differentiating the nature of the damage. The potential applicability of the KP method for structural damage identification is confirmed by laboratory test.

  • PDF

Effects of vertical component of near-field ground motions on seismic responses of asymmetric structures supported on TCFP bearings

  • Mehr, Nasim Partovi;Khoshnoudian, Faramarz;Tajammolian, Hamed
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.641-656
    • /
    • 2017
  • The effects of vertical component of earthquakes on torsional amplification due to mass eccentricity in seismic responses of base-isolated structures subjected to near-field ground motions are studied in this paper. 3-, 6- and 9-story superstructures and aspect ratios of 1, 2 and 3 have been modeled as steel special moment frames mounted on Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratios. Three-dimensional linear superstructures resting on nonlinear isolators are subjected to both 2 and 3 component near-field ground motions. Effects of mass eccentricity and vertical component of 25 near-field earthquakes on the seismic responses including maximum isolator displacement and base shear as well as peak superstructure acceleration are studied. The results indicate that the effect of vertical component on the responses of asymmetric structures, especially on the base shear is significant. Therefore, it can be claimed that in the absence of the vertical component, mass eccentricity has a little effect on the base shear increase. Additionally, the impact of this component on acceleration is remarkable so the roof acceleration of a nine-story structure has been increased 1.67 times, compared to the case that the structure is subjected to only horizontal components of earthquakes.

The active vibration control with force cancelling observer in elastic system (힘 상쇄 관측기를 이용한 탄성계 진동의 능동제어)

  • 박영필;이규섭;최봉환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1016-1025
    • /
    • 1988
  • A force cancelling observed to control the vibration of a single degree of freedom elastic system subjected to an arbitrary, unmeasurable disturbance is considered in this paper. The main idea of a force cancelling observer is how an estimate of the excitation can be derived and used to generate a control force which reduces the vibration. This control is shown to be robust with respect to the parameters describing the behavior of the system. Experimental and numerical results are presented which show the efficacy of the observer when the system is excited by periodic, random, and impulsive torques.

Nonlinear Dynamic Analysis of Helical Gears with Backlash by Torque Fluctuation (토크 변동에 의한 백래시를 가진 헬리컬 기어의 비선형 동적 해석)

  • Park, Chan-IL
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.677-684
    • /
    • 2010
  • Backlashes of gears provide gears for good lubrication and for removal of the interference between teeth by the wear and manufacturing errors. The backlash is the strong nonlinear factor to gears. This study deals with nonlinear modeling of helical gears with backlash. Excitation of helical gears comes from torque variation, the tooth surface error, and the periodical change of mesh stiffness. To study the effect of torque fluctuation, equation of motion for the single degree of freedom torsional model of helical gears with the periodical change of mesh stiffness and the backlash was derived. The Newmark beta method and the Newton-Raphson method were used to obtain the nonlinear behaviors of mesh forces of helical gears. All excitation frequencies initially caused the tooth separation and single-sided impacts of the gear pair and eventually led to the normal tooth contact. However, some special excitation frequencies caused the single-sided impacts in the entire time as well as the initial time. Damping increase reduced the duration of single-sided impacts, and the backlash increase caused those in the entire time domain.

An Experimental Study on the Reinforcing Effects of Mixtures of Vinyl Strip and Cement on the Sand Specimens (비닐스트립-시멘트 혼합 모래시편의 보강효과에 대한 실험연구)

  • Yu, Jeong-Min;Kim, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.5-16
    • /
    • 2018
  • The ever-increasing amount of waste vinyl is causing big environmental problems. In particular, those from farming industry are sometimes left on site or even illegally reclaimed due to the lack of environmental concerns and capacity for collection, which worsens the situation. It is, therefore, believed that the recycling of waste vinyl is the most ideal solution in the viewpoint of environmental preservation. In this context, the potential of vinyl strip as a ground reinforcing material is investigated to expand the application of waste vinyl recycling. In this study, a series of uniaxial compression tests and resonant column tests were performed for sand specimens reinforced with vinyl strips and cement to investigate their reinforcing effects on static and dynamic behaviors. The changes in the uniaxial compressive strength (UCS), the shear modulus and the damping ratio according to the mixing ratio of vinyl strips and cements were analysed for sand specimens, having 40% and 60% relative densities, under various mixing conditions. As a result, both the static and dynamic reinforcing effects of vinyl strip-cement mixture were confirmed and the optimum mixing ratio was proposed.

Flexible Multibody Dynamic Analysis of the Deployable Composite Reflector Antenna (전개형 복합재 반사판 안테나의 유연 다물체 동역학 해석)

  • Lim, Yoon-Ji;Oh, Young-Eun;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Kang, Deok-Soo;Yun, Ji-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.10
    • /
    • pp.705-711
    • /
    • 2019
  • Dynamic behaviors of the deployable composite reflector antenna are numerically and experimentally investigated. Equations of the motion are formalized using Kane's equation by considering multibody systems with two degrees of freedom such as folding and twisting angles. To interpret structural deformations of the reflector antenna, the composite reflector is modeled using a beam model with the FSDT(First-order Shear Deformation Theory). To determine design parameters such as a torsional spring stiffness and a damping coefficient depending on deployment duration, an inverted pendulum model is simply applied. Based on the determined parameters, dynamic characteristics of the deployable reflector are investigated. In addition, its results are verified and compared through deployment tests using a gravity compensation device.