• Title/Summary/Keyword: Torsional Damper

Search Result 92, Processing Time 0.025 seconds

A study of Axial Vibration of Two Stroke Low Speed Diesel Engine On the Diesel Power Plant (육상 디젤 발전소용 저속 2행정 디젤엔진의 종진동에 관한 연구)

  • Lee, D.C.;Ko, J.Y.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1816-1822
    • /
    • 2000
  • The maximum and mean indicated pressure of two stroke low speed diesel engine has been continuously increased with a view of increasing engine power and also reducing fuel consumption. As a result, axial excitation has been highed comparing to that of the previous and so in standard axial vibration damper is applied to all two stroke low speed diesel engine at the free end of crankshaft. Though many studies were carried out for marine use, few has been made for diesel power plant because there was little demand for power plant. Nowadays, diesel engine is much to be used for many benefits and so in this paper, the optimum design of axial vibration on the 65 MW diesel power plant with 9K80MC-S engine was carried out. And the axial-torsional coupled vibration of this shafting system is identified by theoretical analysis and vibration measurement.

  • PDF

A Study of Axial Vibration of Two Stroke Low Speed Diesel Engine on the Diesel Power Plant (육상 디젤 발전소용 저속 2행정 디젤엔진의 종진동에 관한 연구)

  • 이돈출;남정길;고재용
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.9
    • /
    • pp.398-405
    • /
    • 2001
  • The maximum and mean indicated pressure of two stroke low speed diesel engine has been continuously increased with a view of increasing engine power and also reducing fuel consumption. As a result, axial excitation has been increased comparing to that of the previous one. So the axial vibration damper in standard one is applied to all two stroke low speed diesel engine at the free end of crankshaft. Though many studies were carried out for marine use, few has been made for diesel power plant because there was little demand for power plant. Nowadays, diesel engine is much to be used for many benefits. In this paper, the optimum design of axial vibration on the 65 kW diesel power plant with tow 9K80MC-S engines of 9 cylinders was carried out. And the axial-torsional coupled vibration of this shafting system is identified by theoretical analysis and vibration measurement.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

The relationship between time-varying eccentricity of load with the corner lateral displacement response of steel structure during an earthquake

  • Takin, Kambiz;Hashemi, Behrokh H.;Nekooei, Masoud
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.801-812
    • /
    • 2016
  • In an actual design, none of the structures with shear behaviors will be designed for torsional moments. Any failure or damages to roofs, infills, shear walls, and braces caused by an earthquake, will inevitably result in relocation of center of mass and rigidity of the structure. With these changes, the dynamic characteristics of structure could be changed during an earthquake at any moment. The main objective of this paper is to obtain the relationship between time-varying eccentricity of load and corner lateral displacement. In this study, various methods have been used to determine the structural response for time-varying lateral corner displacement. As will be seen below, some of the structural calculation methods result in a significant deviation from the actual results, although these methods include the interaction effects of modes. Controlling the lateral displacement of structure can be performed in different ways such as, passive dampers, friction dampers, semi-active systems including the MR damper and active Systems. Selecting and locating these control systems is very important to bring the maximum safety with minimum cost into the structure. According to this study will be show the relation between the corner lateral displacements of structure and time-varying eccentricity by different kind of methods during an earthquake. This study will show that the response of the structure at the corners due to an earthquake can be very destructive and because of changing the eccentricity of load, calculating the maximum possible response of system can be carried out by this method. Finally, some kind of systems must be used for controlling these displacements. The results shows that, the CQC, DSC and exact methods is comply each other but the results of Vanmark method is not comfortable for these kind of buildings.

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models (선형모델을 이용한 수동변속기의 동적 특성 연구)

  • Yoon, Jong-Yun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.240-248
    • /
    • 2013
  • Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

Analysis of Mount Reaction Forces for Powertrain Mounting Systems using Nonlinear Characteristics (비선형 특성을 적용한 파워트레인 마운팅 시스템의 마운트 전달력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • The primary objective of this study is to truly understand reaction force be due to engine exciting force. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand reaction force was applied MSC.Nastran software. Analyzed frequency response analysis of powertrain mount system. First, engine exciting force was applied field function. Also nonlinear characteristics was applied field function : such as dynamic spring constant and loss factor. And nonlinear characteristics was applied CBUSH. Generally characteristics of rubber mount is constant frequency. But characteristics of hydraulic mount depend to frequency. Therefore nonlinear characteristics was applied. Powertrain mounting system be influenced by powertrain specification, mount position, mount angle and mount characteristics etc. In this study, we was analyzed effects of powertrain mounting system. And we was varied dynamics spring constant and loss factor of mounts.

  • PDF

A Numerical Analysis for Optimal Design of Road Generator System (도로용 발전장치 최적화 설계를 위한 수치해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.163-173
    • /
    • 2014
  • In this study, a modeling method is based on representing a road generation system with several rigid bodies, i.e, pad, shaft, torsional damper, oneway-clutch, gear system, and electricity generator. The simulation software is developed to evaluate the performance of a road generation system. It is used to determine parametric dimension for optimal design with the theoretically calculated results from the simulation software. The parametric dimensions are included as capacity, length, and angle of equipment. The transient responses at the conditions of low and high vehicle speed are compared with the calculated results as torque, power, out energy etc. Consequently, before manufacturing system, the analysis of simulation results shows that the proposed concept and system has efficiency and confidence.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • v.11 no.2
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

Adaptive control of rotationally non-linear asymmetric structures under seismic loads

  • Amini, Fereidoun;Rezazadeh, Hassan;Afshar, Majid Amin
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.721-730
    • /
    • 2018
  • This paper aims to inspect the effectiveness of the Simple Adaptive Control Method (SACM) to control the response of asymmetric buildings with rotationally non-linear behavior under seismic loads. SACM is a direct control method and was previously used to improve the performance of linear and non-linear structures. In most of these studies, the modeled structures were two-dimensional shear buildings. In reality, the building plans might be asymmetric, which cause the buildings to experience torsional motions under earthquake excitation. In this study, SACM is used to improve the performance of asymmetric buildings, and unlike conventional linear models, the non-linear inertial coupling terms are considered in the equations of motion. SACM performance is compared with the Linear Quadratic Regulator (LQR) algorithm. Moreover, the LQR algorithm is modified, so that it is appropriate for rotationally non-linear buildings. Active tuned mass dampers are used to improve the performance of the modeled buildings. The results show that SACM is successful in reducing the response of asymmetric buildings with rotationally non-linear behavior under earthquake excitation. Furthermore, the results of the SACM were very close to those of the LQR algorithm.

Wind tunnel investigation on flutter and buffeting of a three-tower suspension bridge

  • Zhang, Wen-ming;Ge, Yao-jun
    • Wind and Structures
    • /
    • v.24 no.4
    • /
    • pp.367-384
    • /
    • 2017
  • The Maanshan Bridge over Yangtze River in China is a new long-span suspension bridge with double main spans of $2{\times}1080m$ and a closed streamline cross-section of single box deck. The flutter and buffeting performances were investigated via wind tunnel tests of a full bridge aeroelastic model at a geometric scale of 1:211. The tests were conducted in both smooth wind and simulated boundary layer wind fields. Emphasis is placed on studying the interference effect of adjacent span via installing a wind deflector and a wind separating board to shelter one span of the bridge model from incoming flow. Issues related to effects of mid-tower stiffness and deck supporting conditions are also discussed. The testing results show that flutter critical wind velocities in smooth flow, with a wind deflector, are remarkably lower than those without. In turbulent wind, torsional and vertical standard deviations for the deck responses at midspan in testing cases without wind deflector are generally less than those at the midspan exposed to wind in testing cases with wind deflector, respectively. When double main spans are exposed to turbulent wind, the existence of either span is a mass damper to the other. Furthermore, both effects of mid-tower stiffness and deck supporting conditions at the middle tower on the flutter and buffeting performances of the Maanshan Bridge are unremarkable.