• Title/Summary/Keyword: Torsion stress

Search Result 199, Processing Time 0.021 seconds

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

Hepatic Vascular Stress Gene Expression in the Liver Response to Trauma

  • Lee, Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.62-67
    • /
    • 2004
  • Trauma remains one of the important sources leading to systemic inflammatory response anti sub-sequent multiple organ failure. Although hepatic microvascular dysfunction occurs during trauma, the mechanism responsible remains unclear. The aim of this study was to investigate the effect of trauma on hepatic vascular stress gene expression. Femur fracture (EFx) was induced by torsion to the femur at midshaft. Liver samples were taken for RT-PCR analysis of mRNA for gtenes of interest: endothelin-1 (ET-1), its receptors $ET_A$ and $ET_B$, nitric oxide synthases (iNOS and eNOS), cyclooxygenase-2 (COX-2), heme oxygenase-1 (HO-1), and tumor necrosis tactor-${\alpha}$ (TNF-${\alpha}$). The expression of ET-1 mRNA was significantly increased by FFx. Expression of mRNA in FFx group showed no change in $ET_A$, $ET_B$, iNOS and HO-1 and showed a slight increase of 2.2-fold and 2.7-fold for eNOS tll1d COX-2, respectively. The level of TNF-${\alpha}$ mRNA significantly increased in FFx group. In conclusion, mild trauma alone causes little change in expression of vasoactive mediators.

The Effect of Diaphragm on the Distortion of Box Girders (상자형 거더의 격벽이 뒤틀림에 미치는 영향)

  • 황선호;홍성수;최진유;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.335-342
    • /
    • 1999
  • It is well known that l-girders are weak in torsion and it might be more economical to use a box girder, which has great torsional rigidity. The use of box beams does, however, present a potential problem in that cross-sectional distortions can induce large warping normal stresses and transverse bending stress. Accordingly a sufficient number of diaphragms are provided to make the distortional effects minimal. In engineering practice, diaphragms are spaced in 5m intervals without reasonable basis. It is considered to be noneconomical design to the almost design engineers, and it may produce the unsafe structural systems in special cases such as curved bridges with large initial curvature. These problems have not been solved for the lack of adequate tools of structural analysis. In this study, on the basis of the parametric studies, the design formulas for the distortional warping stress and the reasonable diaphragm spacing of box girder were presented.

  • PDF

Effects of Moisture Content on Non-Fracture Dynamic Properties and Fracture Quality of Pacific Whiting Surimi

  • Esturk, Okan;Park, Jae-Won;Raik, Moo-Yeol;Kim, Byung-Yong
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.856-859
    • /
    • 2006
  • The effects of moisture content on non-fracture dynamic properties and fracture gel quality of Pacific whiting surimi were investigated to determine their relationships. Surimi samples were tested at various moisture contents (75, 78, and 81 %). Torsion test showed that shear stress decreased rapidly and strain values decreased gradually as moisture concentration increased. Dynamic storage modulus (G') also decreased as moisture content increased. A strong positive correlation ($R^2=0.90$ to 0.99) was found between the G' measured at temperatures between 10 and $45^{\circ}C$ and fracture stress values. The results indicate that dynamic rheological measurements could be used as a tool for early gel quality assessment.

Redesign a Component of Automotive Propeller Shaft to Improve Productivity (자동차 추진축 부품의 생산성향상을 위한 설계개선)

  • Jung, Won
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.1
    • /
    • pp.157-163
    • /
    • 2009
  • In every aspect of automotive production, quality, productivity and cost are crucial matters. The purpose of this research is to improve the productivity of slip yoke for automotive propeller shaft. This paper presents how to redesign the component that currently manufactured as forged one body type. Attention was focused on not only reducing processing time but insuring durability of the component simultaneously. In Automotive, propeller shaft is the device for transferring power from engine to axle via transmission, and the slip yoke is one of the main parts in the product. Propeller shafts are subject to torsion and shear stress, they thus need to be strong enough to bear the stress.

High Temperature Deformation Behavior of Rapid-Solidification Processed Al-18Si Alloy (급냉응고된 과공정 Al-Si합금의 고온변형특성에 관한 연구)

  • 김성일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.183-186
    • /
    • 2000
  • The high temperature deformation behavior of spray-formed Al-19wt%Si-1.87wt%Mg-0.085wt.%Fe alloy was studied by torsion testing in the strain rate range of 0.001-1 sec-1 and in the temperature range of 300-500 $^{\circ}C$. The relationship between stress temperature and strain rate is expressed using the Power law. the behavior of dynamic recrystallization is showed in 300-35$0^{\circ}C$, 1-0.1sec-1 and the behavior of dynamic recovery is showed in 450-50$0^{\circ}C$, 0.01-0.001sec-1 The size of Si particles is mall when the temperature is low and the strain rate is high. The strain rate sensitivity(m) and the apparent activation energy(Q) indicate the dependence on strain rate and temperature for flow stress respectively. The hot ductility is high when m is high and Q is low. The maps of strain rate sensitivity and apparent activation energy suggest the optimum processing conditions.

  • PDF

Effect of SiC Particle Size on Hot Workability of AA2024/$SiC_P$ Composites (AA2024/$SiC_P$ 복합재료의 열간 가공성에 미치는 강화상 크기의 영향)

  • 고병철;홍흥기;유연철
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.81-84
    • /
    • 1997
  • The hot deformation behavior of SiCp/AA2024 composites reinforced with different sizes of SiCp reinforcements (1, 8, 15, 36, and 44${\mu}{\textrm}{m}$) was investigated by hot torsion tests. The hot restoration of the composites depending on the SiCp reinforcements particle size was studied from the effective stress - strain curves. Dynamic recrystallization (DRX) was occurred in the SiCp/AA2024 composites during the hot deformation at 320 - 43$0^{\circ}C$ under a strain rate of 1.0/sec. Also, the critical strain for DRX decreased with decreasing the reinforcement size of SiCp from 44 to 8${\mu}{\textrm}{m}$. The composite reinforced with SiCp of 8${\mu}{\textrm}{m}$ showed the highest flow stress (265 MPa) and the work hardening rate at 32$0^{\circ}C$ under a strain rate of 1.0/sec.

  • PDF

Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation (304 스테인레스강의 고온다단변형시 재결정 거동)

  • 조상현;김성일;유연철;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

High Temperature Deformation Characteristics (STS 430 고온변형 특성에 관한 연구)

  • 조범호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.179-182
    • /
    • 2000
  • The dynamic softening behavior of type 430 ferritic stainless steel could be characterized by the hot torsion test in the temperature range of 900-110$0^{\circ}C$ and the strain rate range of 0.05-5/sec. It is found that the continuous dynamic recrystallization (CDRX) was a major dynamic softening mechanism. The effects of process variables strain ($\varepsilon$) stain rate($\varepsilon$)and temperature (T) on CDRX could be individually established from the analysis of flow stress curves and microstructure. The effect of CDRX individually established from the analysis of flow stress curves and microstructure. The effect of CDRX increased with increasing strain rate and decreasing temperature in continuous deformation. The multipass deformation processes were performed with 10 pass deformations. The CDRX effect occurred in multipass deformatioon. The grain refinement could be achieved from multipass deformation The grain refinement increased with increasing strain rate and decreasing temperature. Also the CDRX in multipass deformation was affected by interpass time and pass strain. The total strain was to be found key parameter to occur CDRX.

  • PDF

A Study on the Production Mechanisms of Residual Stress in Welded T-joint of Steel Pipe Member (T형 강관 용접 이음부의 잔류응력 생성기구에 관한 연구)

  • 장경호;장갑철;경장현;이은택
    • Journal of Welding and Joining
    • /
    • v.21 no.6
    • /
    • pp.40-45
    • /
    • 2003
  • Steel members have advantages of resisting torsion and axial compression. In design, residual stresses at the welded joint of T-shape steel pipes are one of the most important points to be considered. In this paper, characteristics of residual stresses of welded joints are clarified by carrying out 3D non-steady heat conduction analysis and 3D thermal elastic-plastic FE-analysis. According to the results, the production mechanism of residual stresses at the welded joint of T-shape steel pipe is clarified. In this paper, circumferential stresses depended on thermal histories but axial and radial stresses were more dependent on geometrical shape than thermal histories. Residual stresses in the axial direction on the lower part of pipe member were tensile, controlled by geometrical shape. However, in case of middle part, residual stresses in all the directions were controlled by thermal histories.