• 제목/요약/키워드: Torsion loading

검색결과 99건 처리시간 0.021초

Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion

  • Ding, Fa-xing;Sheng, Shi-jing;Yu, Yu-jie;Yu, Zhi-wu
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.291-301
    • /
    • 2019
  • Pure torsion loading conditions were not frequently occurred in practical engineering, but the torsional researches were important since it's the basis of mechanical property researches under complex loading. Then a 3D finite element model with precise material constitutive models was established, and the effectiveness was verified with test data. Parametric studies with varying factors as steel yield strength, concrete strength and sectional height-width ratio, were performed. Internal stress state and the interaction effect between encased steel tube and the core concrete were analyzed. Results indicated that due to the confinement effect between steel tube and core concrete, the torsional strength of CFT columns was greatly improved comparing to plain concrete columns. The steel ratio would greatly influence the torque share between the steel tube and the core concrete. Then the torsional strength calculation formulas for core concrete and the whole CFT column were proposed. The proposed formula could be simpler and easier to use with guaranteed accuracy. Related design codes were more conservative than the proposed formula, but the proposed formula presented more satisfactory agreement with experimental results.

비틀림하의 복합원통에 있는 원주 표면균열에 대한 응력 확대 계수

  • Kim, Yeong-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제17권9호
    • /
    • pp.151-157
    • /
    • 2000
  • Stress intensity factors for the circumferential surface crack of a long composite cylinder under torsion is investigated. The problem is formulated as a singular integral equation of the first kind with a Cauchy type kernel using the integral transform technique. The mode III stress intensity factors at the crack tips are presented when (a) the inner crack tip is away from the interface and (b) the inner crack tip is at the interface.

  • PDF

Postcracking Torsional Stiffness of Reinforced Concrete Beams under Pure Torsion (순수비틀림을 받는 철근콘크리트 보의 균열후 비틀림 강성)

  • 음성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1991년도 가을 학술발표회 논문집
    • /
    • pp.51-58
    • /
    • 1991
  • In staically indeterminate structures torsional stiffness is an important factor for prediction of mechanical behavior at all loading stages in reinfored concrete beams, which also for calculation of torsional moment. This paper proposes equation for postcracking torsional stiffness of reinforced concrete beams under pure torsion, which is derived considering the equilibrium and compatibility condition for shear panel based on the variable angle space truss model. The equation describes well the effect according to the variation of aspect ratio and steel volume ratio per unit concrete volume. It agress with experimental results in this paper as well as available literature.

  • PDF

Nonlinear model to predict the torsional response of U-shaped thin-walled RC members

  • Chen, Shenggang;Ye, Yinghua;Guo, Quanquan;Cheng, Shaohong;Diao, Bo
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.1039-1061
    • /
    • 2016
  • Based on Vlasov's torsional theory of open thin-walled members and the nonlinear constitutive relations of materials, a nonlinear analysis model to predict response of open thin-walled RC members subjected to pure torsion is proposed in the current study. The variation of the circulatory torsional stiffness and warping torsional stiffness over the entire loading process and the impact of warping shear deformation on the torsion-induced rotation of the member are considered in the formulation. The torque equilibrium differential equation is then solved by Runge-Kutta method. The proposed nonlinear model is then applied to predict the behavior of five U-shaped thin-walled RC members under pure torsion. Four of them were tested in an earlier experimental study by the authors and the testing data of the fifth one were reported in an existing literature. Results show that the analytical predictions based on the proposed model agree well with the experimental data of all five specimens. This clearly shows the validity of the proposed nonlinear model analyzing behavior of U-shaped thin-walled RC members under pure torsion.

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

Elastodyamic analysis of torsion of shaft of revolution by line-loaded integral equation method

  • Yun, Tian Quan
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.457-466
    • /
    • 1998
  • The dynamic response of an elastic torsion shaft of revolution is analysed by the Line-Loaded Integral Equation Method (LLIEM). A "Dynamic Point Ring Couple" (DPRC) is used as a fictitious fundamental load and is distributed in an elastic space along the axis of the shaft outside the shaft occupation. According to the boundary condition, our problem is reduced to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a 2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM), for steady periodically varied loading. Numerical example of a shaft with quadratic generator under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are mentioned.

Experimental study on ultimate torsional strength of PC composite box-girder with corrugated steel webs under pure torsion

  • Ding, Yong;Jiang, Kebin;Shao, Fei;Deng, Anzhong
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.519-531
    • /
    • 2013
  • To have a better understanding of the torsional mechanism and influencing factors of PC composite box-girder with corrugated steel webs, ultimate torsional strength of four specimens under pure torsion were analyzed with Model Test Method. Monotonic pure torsion acts on specimens by eccentric concentrated loading. The experimental results show that cracks form at an angle of $45^{\circ}$ to the member's longitudinal axis in the top and bottom concrete slabs. Longitudinal reinforcement located in the center of cross section contributes little to torsional capacity of the specimens. Torsional rigidity is proportional to shape parameter ${\eta}$ of corrugation and there is an increase in yielding torque and ultimate torque of specimens as the thickness of corrugated steel webs increases.

Direct design of partially prestressed concrete solid beams

  • Alnuaimi, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.741-771
    • /
    • 2007
  • Tests were conducted on two partially pre-stressed concrete solid beams subjected to combined loading of bending, shear and torsion. The beams were designed using the Direct Design Method which is based on the Lower Bound Theorem of the Theory of Plasticity. Both beams were of $300{\times}300mm$ cross-section and 3.8 m length. The two main variables studied were the ratio of the maximum shear stress due to the twisting moment, to the shear stress arising from the shear force, which was varied between 0.69 and 3.04, and the ratio of the maximum twisting moment to the maximum bending moment which was varied between 0.26 and 1.19. The required reinforcement from the Direct Design Method was compared with requirements from the ACI and the BSI codes. It was found that, in the case of bending dominance, the required longitudinal reinforcements from all methods were close to each other while the BSI required much larger transverse reinforcement. In the case of torsion dominance, the BSI method required much larger longitudinal and transverse reinforcement than the both the ACI and the DDM methods. The difference in the transverse reinforcement is more pronounce. Experimental investigation showed good agreement between design and experimental failure loads of the beams designed using the Direct Design Method. Both beams failed within an acceptable range of the design loads and underwent ductile behaviour up to failure. The results indicate that the Direct Design Method can be successfully used to design partially prestressed concrete solid beams which cater for the combined effect of bending, shear and torsion loads.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.

Enhanced damage index method using torsion modes of structures

  • Im, Seok Been;Cloudt, Harding C.;Fogle, Jeffrey A.;Hurlebaus, Stefan
    • Smart Structures and Systems
    • /
    • 제12권3_4호
    • /
    • pp.427-440
    • /
    • 2013
  • A growing need has developed in the United States to obtain more specific knowledge on the structural integrity of infrastructure due to aging service lives, heavier and more frequent loading conditions, and durability issues. This need has spurred extensive research in the area of structural health monitoring over the past few decades. Several structural health monitoring techniques have been developed that are capable of locating damage in structures using modal strain energy of mode shapes. Typically in the past, bending strain energy has been used in these methods since it is a dominant vibrational mode in many structures and is easily measured. Additionally, there may be cases, such as pipes, shafts, or certain bridges, where structures exhibit significant torsional behavior as well. In this research, torsional strain energy is used to locate damage. The damage index method is used on two numerical models; a cantilevered steel pipe and a simply-supported steel plate girder bridge. Torsion damage indices are compared to bending damage indices to assess their effectiveness at locating damage. The torsion strain energy method is capable of accurately locating damage and providing additional valuable information to both of the structures' behaviors.