• Title/Summary/Keyword: Torque-sensor

Search Result 424, Processing Time 0.026 seconds

Practical Pinch Torque Detection Algorithm for Anti-Pinch Window Control System Application

  • Lee, Hye-Jin;Ra, Won-Sang;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2526-2531
    • /
    • 2005
  • A practical pinch torque estimator based on the Kalman filter is proposed for low-cost anti-pinch window control systems. To obtain the accurate angular velocity from Hall-effect sensor measurements, the angular velocity calculation algorithm is executed with additional procedures for removing the measurement noises. Apart from the previous works using the angular velocity estimates and torque estimates for detecting the pinched condition, the torque rate is augmented to the system model and the proposed pinch estimator is derived by applying the steady-state Kalman filter recursion to the model. The motivation of this approach comes from the idea that the bias errors in torque estimates due to the motor parameter uncertainties can be almost eliminated by introducing the torque rate state. For detecting the pinched condition, a systematic way to determine the threshold level of the torque rate estimates is also suggested via the deterministic estimation error analysis. Simulation results are given to certify the pinch detection performance of the proposed algorithm and its robustness against the motor parameter uncertainties.

  • PDF

Development of A Haptic Steering System for a Low Cost Vehicle Simulator using Proving Ground Test Data (주행 시험 데이터를 이용한 저가형 차량시물레이터의 조향감 재현 장치 구현)

  • Kim, Sung-Soo;Jeong, Sang-Yoon;Lee, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2005
  • A haptic steering system which reflects steering reaction torque has been developed for a fixed base vehicle simulator. The haptic steering system consists of a steering effort sensor, MR-clutch, AC servo motor and controller. In order to generate realistic steering torque feel to driver and at the same time to meet real-time simulation requirement, 3D torque map is constructed by experimental data and torque generation algorithm using the torque map has been also developed. 3D torque map is constructed using curve fitting and interpolation of the measured values of the steering angle, velocity and steering torque from actual slalom test on the proving ground. In order to carry out performance test of the developed haptic steering system, a fixed based vehicle simulator is constructed by integrating real time vehicle dynamics module, VR-video/audio module, and the haptic steering system. Steering torque and steering angle curves have been obtained from virtual testing in the vehicle simulator and performance of the haptic steering system has been evaluated.

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Preliminary study of Angle sensor module for Vehicle Steering System Based on Multi-track Encoder (자동차 조향장치용 TAS module을 위한 Multi-track Encoder기반 신호처리보드의 구현)

  • Woo, Seong Tak;Han, Chun Soo;Baek, Jun Byung;Lee, Sang-hoon;Jung, Min Woo;Choo, Sung Joong;Park, Jae Roul;Yoo, Jong-Ho;Jung, Sanghun;Kim, Ju Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.432-437
    • /
    • 2017
  • As 4.0 industry has been developed, research on a self-driving car technology and related parts of an automobile has been highly investigated recently. Particularly, a TAS(Torque Angle Sensor) module on steering wheel system has been considered as a key technology because of its precise angle, torque detection and high speed signal processing. The environmental assessment is generally required on the TAS module to examine high resolution of angle/torque detection. In the case of existing TAS module, angle detection errors has been occurred by back-lash on main and sub gear in addition to complicated structure caused by gears. In this paper, a structure of the TAS module, which minimizes the numbers of components and angle detection errors on the module compared with the existing TAS module, for vehicle steering system based on a Multi-track Encoder has been proposed. Also, angle detection signal processing board, and key technology of the TAS module were fabricated and evaluated. As a result of the experiments, we confirmed an excellent performance of the fabricated signal processing board for angle detection and an applicability of the fabricated angle detection board on the TAS module of vehicles by the environmental assessment an automobile standard.

Developed a test rig for studying the hover performance of a coaxial propeller (동축반전 프로펠러의 제자리 비행 성능연구를 위한 시험장치 개발)

  • Song, Youn-Ha;Song, Jae-Rim;Kim, Deog-Kowan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.560-562
    • /
    • 2017
  • This paper presents the development and test results of a test rig for confirming the hover performance of the coaxial propeller which is applied to the drone in order to carry out the mission that requires high payload such as the development of the courier drones. the performance of each propeller was measured by varying the thrust and torque according to the H/D ratio. the Thrust sensor and torque sensor were used to measure the thrust and torque generated when the propeller rotated, and a photo sensor was used to measure the rpm. it used the data acquisition system to acquire data from each sensor, and used the Labview softwaer to control data storage, monitoring and BLDC motor control. In the test, each propeller meansured the figure of mefit according to the chansge of the interval at the same rpm.

  • PDF

Performance Evaluation of an Integrated Starter-Alternator with an IPM Synchronous Machine under Sensor-less Operation

  • Xu, Zhuang;Rahman, M.F.;Wang, G.;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • This paper presents performance evaluation of an Integrated Starter-Alternator (ISA) prototype with an Interior Permanent Magnet (IPM) synchronous machine under sensor-less operation. To attain a high starting torque at zero speed and in subsequent extremely low speed range, a hybrid signal injection method is proposed. At higher speed, an improved stator flux observer is used for the stator flux estimation. This observer is able to produce accurately-estimated stator flux linkage for high performance Direct Torque and Flux Control (DTFC) implementation. The sensor-less DTFC IPM synchronous machine drive takes full advantage of the capacity of the power converter and fulfills the control specifications for the ISA. The trajectory control algorithm responds rapidly and in a well behaved manner over a wide range of operating conditions. The experimental results verify the feasibility and advantages of the system.

Current Control of Switched Reluctance Motor with Delta Modulation Method on EPLD Logic Design (EPLD 로직구현을 통한 델타변조기법에 의한 스위치드 리럭턴스 전동기의 전류제어)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.4
    • /
    • pp.356-361
    • /
    • 2008
  • The conventional drive system of SRM has a current sensor per each phase. The torque demand signal generated by the outer control loop is translated into individual current reference signal for each phase. The torque is controlled by regulating these currents. Using the SRM in a variable-speed control, the phase currents are generally regulated to achieve a square wave. The simplest form of current regulation uses fixed frequency delta modulation of the phase voltages. The aim of this paper is to regulate 3-phases current of SRM by only single current sensor using delta modulation with digital chip. In this paper, the asymmetric bridge converter which is able to control independently phases and be excited simultaneously is used as the driver system for 6/4 poles SRM. And the current sensor is replaced 3 sensors of each phase with only one on bus line of converter so as to detect current of every phase. The proposed delta modulation technique has been implemented in a simple digital logic circuit using EPLD(Electrically Programmable Logic Device). This method is verified through simulation and experiment results.

A Study on the Fail Safety of Electronics Power Steering Using Sensor Fusion (Sensor Fusion을 이용한 전자식 조향장치의 Fail Safety 연구)

  • Kim, Byeong-Woo;Her, Jin;Cho, Hyun-Duck;Lee, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1371-1376
    • /
    • 2008
  • A Steer-by-Wire system has so many advantages comparing with conventional mechanical steering system that it is expected to take key role in future environment friendly vehicle and intelligent transportation system. The mechanical connection between the hand wheel and the front axle will become obsolete. SBW system provides many benefits in terms of functionality, and at the same time present significant challenges - fault tolerant, fail safety - too. In this paper, failure analysis of SBW system will be performed and than sensor fusion technique will be proposed for fail safety of SBW system. A sensor fusion logic of steering angle sensor by using steering angle sensor, torque sensor and rack position sensor will be developed and simulated by fault injection simulation.

Sensorless Control for Surface Mounted Permanent Magnet Synchronous Machines at Low Speed

  • An, Lu;Franck, David;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.429-435
    • /
    • 2013
  • This paper proposes a sensorless speed control based on a novel extension of the torque producing flux (active flux) observer for the surface mounted permanent magnet synchronous machines (SPMSM) without additional high frequency signal injection. From the estimated torque producing flux, the rotor position and speed can be calculated at low speed due to their independency. Therefore, no rotor position sensor is required. Two approaches of the torque producing flux observer are presented and compared. The results show the stability and robustness of the expansion of the torque producing flux observer at low speed for the SPMSM.