• Title/Summary/Keyword: Torque and speed

Search Result 2,214, Processing Time 0.029 seconds

Speed Control of PMSM using DTC-PWM Approach (DTC-PWM 방식에 의한 PMSM의 속도 제어 기법)

  • Lee, Dong-Hee;Choo, Young-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.268-277
    • /
    • 2009
  • This paper presents an DTC-PWM (Direct Torque Control-Pulse Width Modulation) of PMSM (Permanent Magnet Synchronous Motor). The proposed DTC-PWM method combines a conventional DTC and PWM approach for switching signal generation. The actual torque is estimated by the torque estimator in conventional method, but the switching signal is generated by PWM method according to the switching rules and torque error. A effective voltage vector and zero vector are used to generate the switching signals and asymmetric switching method is applied. A simple calculation of PWM without any complex determination of space vector can assure the constant switching frequency with an constant torque and flux. The proposed torque control scheme for PMSM is verified by experimental results.

Design of BLDC Motor Controller for Electric Power Wheelchair

  • Chu, Jun-Uk;Moon, In-Hyuk;Choi, Gi-Won;Ryu, Jei-Cheong;Mun, Mu-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1509-1512
    • /
    • 2003
  • The electric power wheelchair needs to control motor torque and speed for responding to variable actions given by handling a joystick. In this paper a DSP-based BLDC motor controller using a single dc-link current sensor is presented for electric power wheelchair. It is composed by a DSP processor and three-phase inverter module. To control torque, high speed current control is achieved by the PI controller and pulse width modulation (PWM) signals with 25 kHz carrier frequency, which is performed by 200 ${\mu}sec$ cycle. The speed controller computes the new direct current reference from the speed error and the PI control equation. The displacement value by handling the joystick is converted to reference speeds of right and left wheel motors using nonholonomic wheelchair kinematics. Experimental results show that the presented control system is enough to implement a speed servo in wheelchair driving.

  • PDF

A Novel Space Vector modulation Scheme and Direct Torque Control for Four-switch BLDCM Using Flux Observer

  • Pan, Lei;Wang, Beibei;Su, Gang;Cheng, Baohua;Peng, Guili
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.251-260
    • /
    • 2015
  • The main purpose of this paper is to describe a DTC (direct torque control) method for four-switch brushless dc motor (BLDCM) drive. In the method, a novel voltage space vector modulation scheme, an optimal switching table, and a flux observation method are proposed. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern, and an optimal switching table is proposed to improve the torque distortion caused by midpoint current of the split capacitors. Unlike conventional flux observers, this observer does not require speed adaptation and is not susceptible to speed estimation errors, especially, at low speed. Global asymptotic stability of the flux observer is guaranteed by the Lyapunov stability analysis. DC-offset effects are mitigated by introducing a PI component in the observer gains. This method alleviates the undesired current and torque distortion which is caused by uncontrollable phase. The correctness and feasibility of the method are proved by simulation and experimental results.

Effects of Friction Plate Area and Clearance on the Drag Torque in a Wet Clutch for an Automatic Transmission (클러치 드래그 토크에 미치는 마찰재 면적 및 클리어런스의 영향)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.337-342
    • /
    • 2014
  • The reduction of drag torque is an important research issue in terms of improving transmission efficiency. Drag torque in a wet clutch occurs because of the viscous drag generated by the transmission fluid in a narrow gap (clearance) between the friction plate and a separate plate. The objective of this paper is to observe the effects of the friction plate area and the clearance on the drag torque using finite element simulation. The two-phase flow of air and oil fluid is considered and modeled for the simulation. The simulation analysis reveals that as the rotational speed increases, the drag torque generally increases to a critical point and then decreases sharply at a high speed regime. The clearance between the two plates plays an important role in controlling drag torque peak. An increase in the clearance causes a decrease in shear stress; thus, the drag torque also decreases according to Newton's law of viscosity. An observation of the effect of the area of contact between transmission fluid and friction plate shows that the drag torque increases with the contact area. The flow vectors inside the flow channel present clear evidence that the velocity of the fluid flows is faster with a larger friction plate, that is, in the case of a larger contact area. Therefore, the optimum size of the friction plate should be determined carefully, considering both the clutch performance and drag reduction. It is expected that the results from this study can be very useful as a database for clutch design and to predict the drag torque for the initial design with respect to various clutch parameters.

Influence of Frequency on Electromagnetic Field of Super High-Speed Permanent Magnet Generator

  • Qiu, Hongbo;Wei, Yanqi;Wang, Wei;Tang, Bingxia;Zhao, Xifang;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.980-988
    • /
    • 2019
  • When compared with traditional power frequency generators, the frequency of a super high-speed permanent magnet generator (SHSPMG) is a lot higher. In order to study the influence of frequency on the electromagnetic field of SHSPMGs, a 60000rpm, 117kW SHSPMG was taken as a research object. The two-dimensional finite element model of the generator was established, and the two-dimensional transient field of the generator was simulated. In addition, a test platform of the generator was set up and tested. The reliability of the simulation was verified by comparing the experiment data with that of the simulation. Then the generator electromagnetic field under different frequencies was studied, and the influence mechanism of frequency on the generator electromagnetic field was revealed. The generator loss, voltage regulation rate, torque and torque ripple were analyzed under the rated active power load and different frequencies. The influences of frequency on the eddy current density, loss, voltage regulation rate and torque ripple of the generator were obtained. These conclusions can provide some reference for the design and optimization of SHSPMGs.

Speed Estimation Based Quick Torque Control of Induction Motors in the Very Low Speed Region (피드포워드적 토크속응제어법을 이용한 유도전동기의 저속영역 속도 추정)

  • Jeong, S.K.;Byun, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2172-2174
    • /
    • 1998
  • In this paper, a speed estimation based on the quick torque control is proposed to realize speed sensorless control in a full range of induction motors. The proposed method can be formulated simply from a motor circuit equation and conducted easily by detecting primary motor currents and a voltage command at every sampling time. Since the method need not the differential values of primary currents in an arithmetic of a speed, it can be expected to improve the precision of speed estimation in a very low speed area, especially. Some numerical simulations were conducted with the assumption of using a Pulse Width Modulation voltage source inverter.

  • PDF

Uncertainty Observer using the Radial Basis Function Networks for Induction Motor Control

  • Huh, Sung-Hoe;Lee, Kyo-Beum;Ick Choy;Park, Gwi-Tae;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • A stable adaptive sensorless speed controller for three-level inverter fed induction motor direct torque control (DTC) system using the radial-basis function network (RBFN) is presented in this paper. Torque ripple in the DTC system for high power induction motor could be drastically reduced with the foregoing researches of switching voltage selection and torque ripple reduction algorithms. However, speed control performance is still influenced by the inherent uncertainty of the system such as parametric uncertainty, external load disturbances and unmodeled dynamics, and its exact mathematical model is much difficult to be obtained due to their strong nonlinearity. In this paper, the inherent uncertainty is approximated on-line by the RBFN, and an additional robust control term is introduced to compensate for the reconstruction error of the RBFN instead of the rich number of rules and additional updated parameters. Control law for stabilizing the system and adaptive laws for updating both of weights in the RBFN and a bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov, and the stability proof of the whole control system is presented. Computer simulations as well as experimental results are presented to show the validity and effectiveness of the proposed system.

Speed-torque Characteristics of the Squirrel Cage Induction Motor with High Temperature Superconducting Rotor Bars by the Variation of the Rotor resistance (회전자 저항변화에 따른 고온초전도 단락봉을 사용한 농형유도전동기의 속도-토크 특성)

  • Sim Jung-wook;Lee Kwang-youn;Cha Guee-soo;Lee Ji-kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.33-37
    • /
    • 2004
  • This paper presents the construction and test results of an HTS induction motor. End rings and short bars were made of HTS tapes, To increase the efficiency and starting torque, HTS tapes can be used as the rotor bars. Because large current is induced in the rotor circuit, HTS tapes quench and high starting torque can be obtained. As the speed of rotor builds up. HTS tapes which are used as short bars become superconducting state again. After the HTS tapes recover from quench, resistance of the rotor circuit is nearly zero. In that case, power loss in rotor circuit is eliminated. Stator of the conventional induction motor was used as the stator of the HTS motor. Rated capacity of the conventional motor was 0.75 kW. Performances of the HTS induction motor were compared with those of the conventional motor with same volume and specification. Test result showed that the speeds of the HTS induction motor were the same with synchronous speed up to 2.6 Nm and 1.788 rpm at 9.7 Nm. It guarantees the high efficiency of the HTS motor. Starting torque of the HTS motor was more than twice of the conventional motor.

Maximum Torque Control of SynRM Drive with Artificial Neural Network (인공 신경회로망에 의한 SynRM 드라이브의 최대토크 제어)

  • Ko, Jae-Sub;Nam, Su-Myeong;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.4
    • /
    • pp.185-191
    • /
    • 2005
  • In this paper, a new approach for the Synchronous Reluctance Motor control which ensures producing Maximum Torque per Ampere(MTPA) over the entire field weakening region is presented. In addition, This paper presents a speed sensorless control scheme of SynRM using artificial neural network. Also, by adjusting the base speed for the field weakening operation according to the flux level, the current and voltage limit, the smooth and precise transition into the field weakening operation can be achieved. The proposed scheme is verified validity through simulation.

A Magnetic Brake for Small Wind Turbines

  • Jee, I.H.;Nahm, S.Y.;Kang, S.J.;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.17 no.1
    • /
    • pp.33-35
    • /
    • 2012
  • A magnetic brake system was fabricated for use with small wind turbines. The torque of the pivot did not change as the speed of revolution increased when the magnetic array disc was far from the salient of the aluminum housing, the torque abruptly increased as the magnetic array approached the salient of the aluminum housing. The torque increased as a quadratic function of the speed of revolution when the distance between the magnetic array and the datum point was 60 mm.