• Title/Summary/Keyword: Torque and speed

Search Result 2,218, Processing Time 0.03 seconds

Comparison of DTC between two-level and three-level inverters for LV propulsion electric motor in ship (선박 추진용 저압 전동기에 대한 2레벨 및 3레벨 인버터의 직접토크제어 비교)

  • Ki-Tak RYU;Jong-Phil KIM;Yun-Hyung LEE
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • In compliance with environmental regulations at sea and the introduction of unmanned autonomous ships, electric propulsion ships are garnering significant attention. Induction machines used as propulsion electric motor (PEM) have maintenance advantages, but speed control is very complicated and difficult. One of the most commonly used techniques for speed control is DTC (direct torque control). DTC is simple in the reference frame transformation and the stator flux calculation. Meanwhile, two-level and three-level voltage source inverters (VSI) are predominantly used. The three-level VSI has more flexibility in voltage space vector selection compared to the two-level VSI. In this paper, speed is controlled using the DTC method based on the specifications of the PEM. The speed controller employs a PI controller with anti-windup functionality. In addition, the characteristics of the two-level VSI and three-level VSI are compared under identical conditions. It was confirmed through simulation that proper control of speed and torque has been achieved. In particular, the torque ripple was small and control was possible with a low DC voltage at low speed in the three-level VSI. The study confirmed that the application of DTC, using a three-level VSI, contributes to enhancing the system's response performance.

Developement of planetary differential type traction drive (차동유성형 마찰드라이브의 개발)

  • 이종원;오세훈;최동엽;이대길;전한수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.35-40
    • /
    • 1997
  • The traction drive has advantages of having high efficiency and transmitting the power without blacklash. However, when high ratio of speed reduction is desired, excessively large size is required. In this study, a new type of traction drive is invented, designed and manufactured so that stable speed reduction mech- anisms are available by adopting a cross roller type drive. It has a simple structure, but produces high speed reduction ratio. Power loss is observed, and also, driving torque and torque transfer efficiency are calculated. Pre-loads are needed in order that the traction drive transfers power without slipping, and the spacer is enlarged due to the pre-loading. After all, the key point of pre-load mechanism is that the spacer's diameter becomes larger as pre-loads are applied.

  • PDF

Development of Matlab-based Variable Torque Simulator for wind Turbine Systems (풍력 터빈 모의 실험을 위한 Matlab 기반 가변 토오크 시뮬레이터 개발)

  • Kim, Su-Jin;Kim, Sung-Ho;Joo, Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2010
  • In this paper the principles and structure of a WTS (Wind Turbine Simulator) are described. The proposed WTS is a versatile system specially designed for the purpose of developing and testing new control strategies for wind energy conversion systems. The simulator includes two sub-systems; a torque controller which controls a 3-phase induction motor in order to simulate the wind turbine and wind speed generator which can simulate an actual wind speed. In order to make the proposed system working in real-time, two sub-systems are incorporated into one simulink block by using Real-time workshop. The performance of the proposed system is verified by considering various wind speeds.

Characteristics Experiment of Domestic Developed Hydraulic Axial Piston Motor (개발한 국산화 유압 액셜피스톤모터의 특성실험)

  • Yum, Man-Oh;Lee, Sang-Yun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.70-76
    • /
    • 2007
  • The purpose of this study is to analyze the characteristics of a domestic developed hydraulic axial piston motor. An experimental apparatus was constructed and the output torque, the input oil pressure, the input flow rate, the speed of motor and oil temperature were measured. They were measured under both no load and load conditions. The results are as follows; 1. Motion of motor became steady state conditions after 5 seconds. 2. Output torque of motor was proportional to input oil pressure under both load and unload. 3. Speed of motor decreased with increasing load. 4. Oil temperature was almost constant. The results of this study will offer the basic data in designing and operating hydraulic axial piston motors.

Comparison of Dynamic Characteristics of the Single phase induction motor at Single Phase and Two Phase control (단상 유도전동기의 단상 및 2상 제어 운전시 동작특성 비교)

  • Yang, B.Y.;Kwon, S.H.;Kwon, B.I.;Lee, C.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.936-938
    • /
    • 2003
  • The single Phase induction motor is used to small size electronic appliance by production cost of a low-cost. But, it is low efficiency large torque ripple and impossible speed control. However we can change the speed if it similar to the three phase induction motor. And we studied about the two phase induction motor that torque ripple is smaller. So, in this paper the dynamic characteristics of the two phase induction motor are described and compared with the cage-type single phase induction motor to find the characteristics of the torque ripple and current, speed through the time-stepped finite element method.

  • PDF

Torque Estimation Using Precise Calculations of Inductance and Iron loss Mathematization

  • Cho, Gyu-Won;Kim, Gyu-Tak
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.300-305
    • /
    • 2013
  • The torque was calculated with inductance and iron loss. Because the linkage flux can change the inductance, and q-axis current can change the iron loss. Therefore, precise estimation of torque can achieve with the inductance and iron loss detail calculations. So, in this paper, the d, q-axis inductance was verified through CVCT(Current Vector Control Test) and DCT(Direct Current Test). Also in the iron loss calculation, the prediction of all areas of current magnitude, phase angle and speed was very difficult. And LUT(Look-Up Table) was spent time and resource largely. Therefore, iron loss mathematization was proposed according to current magnitude, phase angle and speed. Also, characteristics of IPMSM were comprised of analyzed and experimental values.

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

Preliminary Design Analysis of Low Speed Interior Permanent Magnet Machine with Distributed and Concentrated Windings

  • Ahsanullah, Kazi;Dutta, Rukmi;Rahman, M.F.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.139-147
    • /
    • 2014
  • The paper presents a systematic comparison of four topologies of the interior permanent magnet machine (IPMM) designed for low speed applications. This comparative study investigates the suitability of the concentrated winding and distributed winding in the stator and the flat-shaped or V-shaped magnets in the rotor poles. The paper also studies the inductance characteristics of the designs using finite element analysis. Various steps taken to minimize the cogging torque and torque ripple in the studied machines were also discussed in details.

Drive Controller System in PM Motor with Independently Excited Winding for an Electric Bicycle (전기자전거용 독립여자권선 영구자석 전동기의 구동제어기 설계)

  • Choi, Jin-Wook;Son, Young-Dae;Kang, Gyu-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.175-177
    • /
    • 2007
  • This paper presents for the torque characteristics and improving the efficiency of driving system of electric bicycle which applied IEWPM(Independently Excited Winding Permanent Magnet) motor. IEWPM motor can expand the number of phase from 3 phases to multiphase like SRM motor because stator windings are unconnected directly. BLDC motor raise rotor'-s electromagnetic torque per unit volume by using Spoke type permanent magnet. By using two photo sensor per phase and applying excited width, advance angle and bipolar control, we confirmed higher torque at a low speed, higher out-put at a high speed, and efficiency improvement at a wide speed control area.

  • PDF

Mechanical Loss Model for a Metal Belt CVT (금속벨트 CVT 동력전달 손실모델)

  • Ryu, Wan-Sik;Kim, Pil-Gu;Kim, Hyun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.81-87
    • /
    • 2006
  • In this paper, the belt-pulley mechanical loss is investigated. A bondgraph model for the mechanical loss is developed from the viewpoint of the power flow by assuming that all power losses are attributed to the torque loss. The mechanical loss model consists of transient and steady state part. The coefficients of the power loss model are obtained from the experiments. It is found from the simulations and experiments that the steady state loss depends on the line pressure, input torque and rotational speed while the transient loss depends on the rotational speed, shift speed and the inertial torque.