• Title/Summary/Keyword: Torque and speed

Search Result 2,214, Processing Time 0.031 seconds

Design of a Fuzzy Speed Controller and a Fuzzy Angular Acceleration Observer for a Permanent Magnet Synchronous Motor (영구자석 동기전동기의 퍼지 속도제어기 및 퍼지 각가속도 관측기 설계)

  • Jung, Jin-Woo;Choi, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.103-112
    • /
    • 2011
  • This paper proposes a new fuzzy speed controller for the precise speed control of a permanent magnet synchronous motor(PMSM). The proposed control system needs the information of the angular acceleration instead of the load torque, so the third-order fuzzy acceleration observer estimates it. Moreover, the LMI conditions are derived for the existence of the fuzzy acceleration observer and fuzzy speed controller, and the gain matrices of the observer and controller are obtained. It is analytically proven that the proposed observer-based fuzzy speed regulator is exponentially stable. To evaluate the performance of the proposed control algorithm, experimental results as well as simulation results are provided under the conditions of motor parameter and load torque variations. Finally, it is clearly confirmed that the proposed control method can accurately control the speed of a PMSM.

Simple Dynamometer for Dynamics Investigation of Induction Motor

  • Inpradab, Tanin;Pongswatd, Sawai;Masuchun, Ruedee;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.821-824
    • /
    • 2005
  • This paper presents a technique to evaluate torque and speed characteristics of induction motor with the Dynamometer. The simple Dynamometer controlled via microcontroller and displayed by computer. The Microcontroller generates the PWM (Pulse Width Modulation) signal and control the duty cycle of signal for control braking level. The Buck converter is a braking unit which uses IGBT as switch in circuit. The output current of the Buck converter and output voltage of tacho generator are converted to digital signals and analyzed by microcontroller. The signals are then sent to computer for displaying torque and speed responds independent on the braking time. The test results of the Dynamometer in this research can coreectly predict the torque and speed response under reasonable tests. Moreover, this Dynamometer is easy and inexpensive to make.

  • PDF

Study of Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in Constant Torque Region (매입형 영구자석 동기전동기의 일정 토크 영역에서 최대 토오크 운전에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;Im, Ik-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.195-203
    • /
    • 2000
  • In this paper a new controller is proposed to operate the interior permanent magnet synchronous motor(IPMSM) by the control method of the maximum torque per ampere in constant torque region. The implementation method of the conventional torque controller is explained and analyzed exactly. The proposed controller does not use the torque and q-axis current of the speed controller but the amplitude of the stator current in order to utilize not only the magnetic alignment torque but also the reluctance in the constant region, gurantees the linearity of the torque, and is easily implemented. These attractive are verified through the experiment.

  • PDF

A Study on the Mode Conversion Type-Single Resonance Mode Ultrasonic Motor Using Bolt Tightened Langevin Type Vibrator (볼트조임 란쥬반형 진동자를 이용한 모드변환형-단일공진모드 초음파 모터에 관한 연구)

  • 이재형;박태곤
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.3
    • /
    • pp.123-127
    • /
    • 2004
  • Mode conversion type ultrasonic rotary motor using bolt tightened Langevin type vibrator was studied. Driving frequency of the motor, displacements and elliptical trajectories at tip of the coupler were simulated by finite element analysis program (ANSYS). Speed and torque of the fabricated motor were measured as functions of input voltage and load. As results, from FEA the driving frequency of 40.8[kHz] and useful elliptical trajectories were found. Fabricated motor rotated clockwise at frequency of 38.2[kHz]. Speed and torque of the motor were increased when the input voltage was increased. Maximum speed, torque and efficiency were 75[rpm], 0.14[Nm] and 6.28[%], respectively.

Speed Sensorless Control of Induction Motors in the Very Low Speed Region Considering the Secondary Resistance Identification (2차 저항 동정을 고려한 유도전동기의 저속영역 속도센서리스 제어)

  • Hwang, D.I.;Jeong, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1042-1045
    • /
    • 2000
  • Speed control without speed sensor is expected strongly to progress reliability, simplicity and cost performance of I.M and to expand its application part. This paper investigates a novel speed estimation method of I.M considering the secondary resistance identification based on the transientless torque control technique. Especially, this paper aimed at the identification of the secondary resistance simultaneously with speed estimation. For this, the secondary flux with some frequency is controlled independently on torque. The proposed speed estimation method is derived from a motor circuit equation theoretically and also it can be conducted easily by detecting primary motor currents and primary voltage commands at every sampling time. Some numerical simulations with the assumption of using a pulse width modulation(PWM) voltage source inverter and experimental results are performed to verify the proposed method.

  • PDF

A Study on vector control of induction motor drive using a speed sensorless (속도센서리스 벡터제어에 의한 유도전동기 운전)

  • 이춘상
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.417-420
    • /
    • 2000
  • In order to the torque control the indirect flux control was performed by controlling the ratio of e/f and the q-axis flux was estimated by the slip command and q-axis flux was estimated by the slip command and q-axis current in the rotor circuits. Also the frequency was controlled to keep on the q-axis flux to be zero and the constant torque characteristics could be obtained by generation the preset torque. In the induction motor driven by the boltage source inverter with the constant voltage and frequency the speed variation is expressed as a slip So the speed control can be achieved by slip compensation The slip was calculated with a q-flux current filtered by first-order filter and as the result the error problem which may occur in current detection was eliminated

  • PDF

A Control Strategy for Switched Reluctance Motor with High Sspeed Operation (고속에서의 스위치드 리럭턴스 모터의 제어 기법)

  • 유준석;이태규;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.370-376
    • /
    • 1993
  • In this paper, we present the voltage source algorithm for high speed and low torque ripple operation of a switched reluctance motor (SRM). The SRM has simpler structure than the traditional dc or ac motor. It has a high starting torque and can be operated in the wide range of speed. So it can be applied to various areas. But the SRM has some difficulties in driving circuit and controller due to the large inductance variations. In this study, in order to produce the low torque ripple and the high speed operation, a voltage source algorithm is proposed. We showed the good performance of the proposed controller through simulation and experiment.

  • PDF

Torque Ripple Reduction of SRM using DITC (직접 순시 토크 제어에 의한 SRM 토크 리플 억제)

  • Lee, Zhen-Guo;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.87-90
    • /
    • 2006
  • The direct instantaneous torque control (DITC) method is presented in this paper, which enables torque to be generated during all region and instantaneous torque control to be possible. The hysteresis control mode with the compared value between given torque and instantaneous output torque as input is applied in respect region. The output torque function, that is instantaneous output torque with the variation of current and position of rotor, is achieved by experiment. In this control mode the torque subsection function and current control are not needed. The turn on angle with variation of load torque and speed is only selected and turn off angle can be neglected. The validity of method is tested by simulation and experiment.

  • PDF

Study on the Design of Cam-type Transfer Unit (대형 캠 타입 이송장치의 설계에 관한 연구)

  • 이택민;이동윤;양민양
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.1
    • /
    • pp.31-39
    • /
    • 2004
  • This paper presents design solutions for cam type transfer unit in which feeding, lifting, and clamping motions are generated by cams. In order to achieve faster transfer motion, each designed cam must satisfy the given specifications such as velocity, acceleration, jerk, pressure angle, cam thickness, and torque. To reduce absolute torque magnitude and torque variation, a conjugate cam and a torque reduction cam are used respectively. The conjugate cam eliminates the redundant pre-load by using complementary cam to avoid jumping between a cam and a follower. The torque reduction cam reduces the torque variation by applying opposite torque to a cam shaft. The experimental result shows the reductions of the absolute torque value and torque variation. The improvement of working speed and life span of cam type transfer unit can be expected.

Effect of the Power Steering System Driving Torque on Vehicle Fuel Economy in a Passenger Car (Power Steering System의 구동력이 차량 모드주행연비에 미치는 영향)

  • Kim Namkyun;Han Changho;Kim Wooseok;Lee Jonghwa;Park Jinil;Park Kyungseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.60-67
    • /
    • 2006
  • To improve the vehicle fuel economy, various technologies have been studied. Meanwhile it deteriorates fuel economy that the increased driving torque for Power Steering System (PSS) due to weighted vehicle and widened tire for low speed driving and parking. So the larger driving torque for PSS is, the lower fuel economy is. Therefore, the study about the effect of the driving torque for PSS and the engine total friction must be preceded to improve the vehicle fuel economy. In this study, a PSS module separated from the vehicle is used to measure the driving torque for PSS with respect to the pressure of PSS. The result shows that the driving torque for PSS was in direct proportion to the pressure of PSS 3 (N-m) driving torque for PSS vs. 10 (bar) pressure of PSS, and 8 (N-m) vs. 40 (bar). In addition, the driving torque and pressure for PSS was measured according to the engine speed in the component test condition which was in the vehicle condition. Measuring the driving torque for PSP in the vehicle condition was established by using the VeFAS which was a fuel economy analyzer developed in our lab and installing PSS By-pass line. The effect of the driving torque for PSS on the vehicle fuel economy was analyzed with FTP-75 cold start mode.