• 제목/요약/키워드: Torque and speed

Search Result 2,214, Processing Time 0.035 seconds

Parameters Estimation and Torque Monitoring for the Induction Spindle Motor (주축용 유도전동기의 매개변수 추정과 토크 모니터링 시스템)

  • Kwon, Won-Tae;Kim, Gyu-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.238-244
    • /
    • 2004
  • To monitor the torque of an induction motor using current, the accurate identification of the motor parameters is very important. In this study, the motor parameters such as rotor resistance, stator and rotor leakage inductance, mutual inductance are estimated for torque monitoring and indirect vector control. Estimated parameters are used to monitor the torque of vector controlled induction motor without any speed measuring sensor. Stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. From the experiments, the proposed method shows a good estimation of the motor parameters and torque under the normal rotational speed.

Speed Control of Permanent Magnet Synchronous Motors using an Adaptive Controller (적응제어기를 이용한 영구자석 동기전동기의 속도 제어)

  • Jung, Jin-Woo;Kim, Tae-Heoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.977-983
    • /
    • 2011
  • This paper proposes a new adaptive speed controller to achieve a robust speed control of a permanent magnet synchronous motor(PMSM). The proposed adaptive regulator does not require any information on the motor parameter and load torque values, so it is very insensitive to model parameter and load torque variations. Also, the stability of the proposed adaptive control system is proven. To validate the robustness of the proposed adaptive speed controller, both simulation and experimental results are provided under motor parameter and load torque variations. It is clearly demonstrated that the proposed adaptive regulator can accurately control the speed of permanent magnet synchronous motors.

A New Direct Torque Control Method of Induction Motor for Torque Ripple Reduction

  • Kim, Deok-Ki;Kim, Jong-Su;Kim, Sung-Hwan;Kim, Hyun-Soo;Kim, Won-Ouk;Yoon, Kyoung-Kuk;Oh, Sae-Gin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1061-1067
    • /
    • 2008
  • Direct Torque Control[DTC] and Vector Control are the two schemes developed for high performance induction motor drives. DTC based induction motors are being increasingly used in various industrial applications. DTC offers fast torque response and better speed control with lesser hardware and processing costs as compared to vector controlled drives. However, conventional DTC suffers from high torque ripple, current harmonics and low performance during torque transients. In this paper a new Direct Torque Control[DTC] method of induction motor is presented. In comparison with the conventional DTC method, the PWM technique is applied to proposed control method. In this method, decoupling mechanism is not required and the torque, the flux magnitude are under control using PI controllers and generating the voltage command for inverter control. Therefore torque and speed ripple could be reduced in comparison with the conventional switching table DTC.

Field Weakening Control of IPMSM for High Speed Operation (영구자석 동기전동기의 약계자제어에 의한 고속 운전)

  • Yoon, Byung-Do;Kim, Yoon-Ho;Kim, Choon-Sam;Lee, Byung-Song;Kim, Soo-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.588-590
    • /
    • 1994
  • This paper describes current controlled PWM technique of IPM synchronous motors for a wide variety of speed control applications. The IPM synchronous motors have a saliency, in which the q-axis inductance is larger than the d-axis inductance. As a consequence, there exists a reluctance torque component Thus when this component is added to the torque component produced by the stator currents and the air-gap flux, IPM motor drives are readily applicable where full torque Is required up to full or base speed. They are however limited in their ability to operate in the power limited regime where the available torque is reduced as the speed is increased above its base value. This paper reviews the operation of the IPMSM drives when they are constrained to be within the permissible envelope of maximum inverter voltage and current to produce the rated power and to provide this with the highest attainable rotor speed. The wide variety of speed control strategy is analyzed and the performance is investigated by the computer simulation using actual parameters of a drive system. Simulation results are given and discussed.

  • PDF

Direct Torque Control Method of Induction Machine with Constant Average Torque (일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법)

  • Kim, Jeong-Ok;Jo, Nae-Su;Choe, Byeong-Tae;Kim, U-Hyeon;Im, Seong-Un;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

A Study of Control Method of SRM for Variable Speed Control

  • Park, Heesung;Hwang, Yeongseong;Seong, Sejin;Choi, Jaedong
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.754-757
    • /
    • 1998
  • In this paper, the fuzzy control logic of Switched Reluctance Motor(SRM) is introduced to apply the variable speed drive system. Since the speed-torque property of SRM has high speed variation to the changes of torque like a DC motor, to apply SRM to the variable speed driving system, the optimal speed-torque control method is required. As the control method like this, the fuzzy logic and PI control are proposed, and characteristics of them are compared and verified through the experimental results

  • PDF

Wind Turbine Simulator for Comparative Study of MPPT Controls

  • Putri, Adinda Ihsani;Ahn, Minho;Choi, Jaeho
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.128-129
    • /
    • 2012
  • This paper proposed the wind turbine simulator for comparative study of the MPPT controls. The development of this wind turbine simulator is based on the torque controlled induction motor. The torque reference is obtained from a mathematical model of wind turbine whereas the inputs are rotor speed, wind speed and fixed-value of pitch angle. By using this wind turbine simulator, the real wind is not needed. Wind speed information can be stored and regenerated anytime. Hence it is possible to apply the same wind speed condition to different MPPT controls. With the same wind speed condition, it can fairly compare the advantages and disadvantages of the MPPT controls. The proposed wind turbine simulator is verified through PSIM simulation.

  • PDF

A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control (직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Baek, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.199-206
    • /
    • 2002
  • This paper describes a reliability characteristics of an air foil journal bearing for high speed turbomachinery at room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with motor driven test rig. Lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About load carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, The trends in change of start torque, stop torque, and bearing temperature were shown during 10,000 cycle start-stop test of an air foil journal bearing. from the results of this work, an air foil bearing will be done well, as a supported bearing for high speed turbo-compressor.

  • PDF

A Study on the Reliability of an Air Foil Journal Bearing for High Speed Turbomachinery (고속 터보기계용 공기 포일 저널 베어링의 신뢰성에 관한 연구)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.7-14
    • /
    • 2003
  • This paper describes reliability characteristics of an air foil journal bearing for high-speed turbomachinery at a room temperature. To verify the reliability of air foil journal bearing, lift-off characteristics, load carrying capacity, and 10,000 cycle start-stop test were performed with a motor-driven test rig. A lift-off test shows the relationship between the rotating speed of the shaft and the frictional torque with bearing surface. About a load-carrying capacity, the tested air foil journal bearing produced a load capacity of 500N at an operating speed of 15,000rpm, which is compared with results of numerical analysis and empirical coefficients. Finally, the trends in change of start torque, stop torque, and bearing temperature were shown during a 10,000-cycle start-stop test of an air foil journal bearing. We found that an air foil bearing performs well, as a supported bearing for the high-speed turbocompressor.