• Title/Summary/Keyword: Torque Phase

Search Result 802, Processing Time 0.162 seconds

Clinical presentation of a horse-derived biomaterial and its Biocompatibility: A Clinical Case Report

  • Koo, Ki-Tae;Park, Jang-Yeol;Park, Jun-Seok;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.sup2
    • /
    • pp.287-291
    • /
    • 2009
  • Purpose: The objective of this clinical presentation was to present a clinical case series report of socket preservation, sinus augmentation, and bone grafting using a horse-derived biomaterial. Methods: A horse-derived biomaterial was used in 8 patients for different indications including socket preservation following tooth extraction, osseous bone grafting, and sinus augementation procedures. Surgeries were performed by a well trained specialist and clinical radiographs were obtained at designated intervals. Biopsy cores of 2 ${\times}$ 8 mm prior to implant placement was obtained following a healing interval of 4 - 6 months. A clinical and histologic evaluation was performed to evaluate the clinical effectiveness and biocompatibility of the biomaterial. Results: All surgeries in 8 patients were successful with uneventful healing except for one case with membrane exposure that eventually resulted with a positive outcome. Radiographic display of the healing phase during different intervals showed increased radiopacity of granular nature as the healing time increased. No signs of adverse effect or infection was observed clinically and the tissues surrounding the biomaterial seemed well-tolerated with good intentional healing. The augmented sinuses healed uneventfully suggesting in part, good biocompatibility of the biomaterial. Dental implants placed following socket preservation were inserted with high initial torque suggesting good initial stability and bone quality. Conclusions: Our results show that at least on a tentative level, a horse-derived biomaterial may be used clinically in socket preservation, sinus augmentation, bone grafting techniques with good intentional healing and positive results.

FES Exercise Program for Independent Paraplegic Walking (하반신 마비환자의 FES 독립보행을 위한 근육 강화 프로그램)

  • Khang, Seon-Hwa;Khang, Gon;Choi, Hyun-Joo;Kim, Jong-Moon;Chong, Soon-Yeol;Chung, Jin-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.69-80
    • /
    • 1998
  • This research was designed to investigate how the exercise program affects paraplegic standing and walking employing functional electrical stimulation(FES). Emphasis was also given to fatigue of major lower extremity muscles induced by different types of electrical stimulation. We applied continuous and intermittent rectangular pulse trains to quadriceps of 10 normal subjects and 4 complete paraplegic patients. The frequencies were 20Hz and 80Hz, and the knee angle was fixed at 90$^{\circ}$and 150$^{\circ}$to investigate how muscle fatigue is related to muscle length. The knee extensor torque was measured and monitored. We have been training quadriceps and gastrocnemius of a male paraplegic patient by means of electrical stimulation for the past two year. FES standing was initiated when the knee extensors became strong enough to support the body weight, and then the patient started FES walking utilizing parallel bars and a walker. We used an 8-channel constant-voltage stimulator and surface electrodes. The experimental results indicated that paralyzed muscles fatigued rapidly around the optimal length contrary to normal muscles and confirmed that low frequency and intermittent stimulation delayed fatigue. Our exercise program increased muscle force by approximately 10 folds and decreased the fatigue index to half of the initial value. In addition, the exercise enabled the patient to voluntarily lift each leg up to 10cm, which was of great help to the swing phase of FES walking. Both muscle force and resistance to fatigue were significantly enhanced right after the exercise was applied every day instead of 6 days a week. Up to date, the patient can walk for more than two and half minutes at 10m/min while controlling the on/off time of the stimulator by pushing the toggle switch attached to the walker handle.

  • PDF