• 제목/요약/키워드: Torque Phase

검색결과 802건 처리시간 0.026초

Harmonic Winding Factors and MMF Analysis for Five-phase Fractional-slot Concentrated Winding PMSM

  • Kang, Huilin;Zhou, Libing;Wang, Jin
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.20-26
    • /
    • 2014
  • To enhance torque density by harmonic current injection, optimal slot/pole combinations for five-phase permanent magnet synchronous motors (PMSM) with fractional-slot concentrated windings (FSCW) are chosen. The synchronous and the third harmonic winding factors are calculated for a series of slot/pole combinations. Two five-phase PMSM, with general FSCW (GFSCW) and modular stator FSCW (MFSCW), are analyzed and compared in detail, including the stator structures, star of slots diagrams, and MMF harmonic analysis based on the winding function theory. The analytical results are verified by finite element method, the torque characteristics and phase back-EMF are also taken into considerations. Results show that the MFSCW PMSM can produce higher average torque, while characterized by more MMF harmonic contents and larger ripple torque.

4상과 5상 스텝모터의 모델링 및 구동방식에 따른 토크특성해석 (Modeling And Analysis of Torque Characteristics for Full-step of 4Phase And 5Phase Hybrid Type Step Motors)

  • 최두성;백수현;김용;윤신용;김철진;임태빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.37-39
    • /
    • 1998
  • The hybrid step motor has found applications in a wide range of mechanical systems as a low cost, open-loop positioning device. The step motor provides good stiffness at rest against disturbing load influences, a combination of moderate speed fine resolution, high reliability and simplicity. In recent years, considerable competition has arisen over the technological issue of wheather the device should be applied as a 2-Phase or 5-Phase machine. In this paper, to compare two systems, we have atempted to derive the mathematical. model, and analysed operating detent torque with this model. The analysis shows that a fundamental component of the permeance distribution produces the average torque and that harmonic components produce the ripple torque.

  • PDF

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • 한국전문물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

위상각제어에 의한 단상유도전동기의 토크제어기설계 (The design of a torque controller for single phase induction motor using phase angle)

  • 임영철;최찬학;나석환;정영국;장학충;장영학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.908-911
    • /
    • 1993
  • The single-Phase induction motor is widely used in many light duty applications. especially in home and the office. At present, many applications which use these motor require continuously adjustable speed control. In the general, the speed control of single-phase induction motor is accomplished at a few discrete speeds by using tapped-windings, pole switching or gear. These techniques is inefficient and complicated. In this paper, auxiliary winding voltage phase angle of single-phase induction motor is used to continuously adjust electromagnetic torque. The analysis includes the determination of the relationship between the auauxiliary winding voltage phase angle and torque. Simulation results of the motor's torque-speed characteristics using the controlled auxiliary winding supply are shown and discussed. The drive is tested using a dynamometer to experimentally verify the results of the theory and simulations.

  • PDF

Comparison of Efficiency for Different Switching Tables in Six-Phase Induction Motor DTC Drive

  • Taheri, Asghar;Rahmati, Abdolreza;Kaboli, Shahriyar
    • Journal of Power Electronics
    • /
    • 제12권1호
    • /
    • pp.128-135
    • /
    • 2012
  • In this paper, different switching tables proposed for the Direct Torque Controlled (DTC) of a six-phase induction machine are simulated and implemented. A six-phase induction motor has 64 space voltage vectors which result in increased complexity in the selecting of inverters switching. The unsuitable selection of a switching table leads to large harmonics especially at low speed and it also reduces drive efficiency. A six-phase induction machine has large zero sequence harmonic currents of the order $6{\kappa}{\pm}1$. These harmonic currents are varied in various techniques. Decreasing this loss is essential in a six-phase induction machine. The main purpose of this paper is to improve the ST-DTC of six-phase induction machines to reduce the voltage and current harmonics and the torque pulsation. Selecting a suitable method for minimizing these harmonics is very important.

Signal processing to measurements of dynamic torque by use of magnetic lattice

  • Asakura, Toshiyuki;Danno, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1053-1058
    • /
    • 1989
  • This paper presents the preliminary studies on measurements of dynamic torque in the rotating shaft by utilizing the magnetic lattice. The intensity of torque can be detected as the phase differences between two magnetic sinusoidal signals recorded on magnetic tapes wound on the shaft. This research describes, from the data concerning with phase differences including noise, a method of signal processing to estimate the true value of the torque.

  • PDF

브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식에 관한 연구 (A Study on the Current Control Method for Torque Ripple Reduction of Brushless DC Motor)

  • 이광운;홍희정;박정배;여형기;유지윤
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.342-346
    • /
    • 1998
  • The brushless DC motor with trapezoidal back emfs has torque ripple due to phase commutation. The torque ripple generates noise and vibration and cause errors in position control so this makes the brushless DC motor less suitable for high performance servo applications. In this paper, we propose a new current control method to reduce the torque ripple due to commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor.

  • PDF

약계자영역을 포함한 BLDC 전동기의 새로운 토크 리플 최소화 방법 (Torque Ripple Minimization of BLDC Motor Including Flux-Weakening Region)

  • 원태현;박한웅;이만형
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.445-454
    • /
    • 2002
  • Torque ripple control of brushless DC motors has been the persisting issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. In this paper, a novel approach to achieve the ripple-free torque control with maximum efficiency based on the d-q reference frame is presented and analyzed. The proposed approach can provide the optimized phase current waveforms over wide speed range incorporating cogging torque compensation without an access to the neutral point of the motor windings. Moreover, the undesirable errors caused by the assumptions such as 3 phase balance or symmetry of the phase back EMF between electrical cycles, which are related with the manufacturing imperfections, can be also eliminated. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. A hysteresis current control system is employed to produce high-frequency electromagnetic torque ripples for compensation. The validity and applicability of the proposed control scheme to real situations are verified through the simulations and experimental results.

6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘 (Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM)

  • 김성훈;장원진;조관열;김학원
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

범용 기동기에 의한 단상유도전동기의 보조권선 제어 특성 (The Auxiliary Winding Control Characteristics of Single-Phase Induction Motor by Universal Starting Switch)

  • 임홍우;임병옥;정수복;조금배;백형래
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권6호
    • /
    • pp.396-401
    • /
    • 2004
  • Single phase induction motor(SPIM) is one of the most widely used type of low power AC motors in the world, especially for domestic or commercial applications where a three phase power supply is not available. Single phase induction motors have no starting torque their own. So there are several ways of starting single phase induction motors. The most common type is the starting capacitor installed in series with the auxiliary winding to increase the starting torque. In the conventional systems, this function is conducted by a centrifugal switch. But the mechanical centrifugal switch has many problems such as switch malfunction. This paper presents the auxiliary winding control using digital universal starting switch to overcome these shortcomings of centrifugal switch.