• Title/Summary/Keyword: Torque Mode Control

Search Result 303, Processing Time 0.024 seconds

A Direct Torque Control Characteristics of SRM using PWM Approach (PWM 기법을 적용한 SRM의 직접토크 제어 특성)

  • Lee, Dong-Hee;Wang, Huijun;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.179-185
    • /
    • 2008
  • In this paper, an advanced torque control scheme of SRM using DITC(Direct Instantaneous Torque Control) and PWM(pulse width modulation) is presented. Different from conventional DITC method, proposed method uses one or two switching modes at every sampling time, instead of only one switching mode. The duty ratio of the phase switch is regulated according to the torque error and simple control rules of DITC. Moreover the sampling time of control can be extended, which allows implementation on low cost micro-controllers. A simple calculation of PWM can assure a constant switching frequency with an excellent control performance. The proposed control method is verified by the simulations and experimental results.

A Nonlinear Sliding Mode Controller for IPMSM Drives with an Adaptive Gain Tuning Rule

  • Jung, Jin-Woo;Dang, Dong Quang;Vu, Nga Thi-Thuy;Justo, Jackson John;Do, Ton Duc;Choi, Han Ho;Kim, Tae Heoung
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.753-762
    • /
    • 2015
  • This paper presents a nonlinear sliding mode control (SMC) scheme with a variable damping ratio for interior permanent magnet synchronous motors (IPMSMs). First, a nonlinear sliding surface whose parameters change continuously with time is designed. Actually, the proposed SMC has the ability to reduce the settling time without an overshoot by giving a low damping ratio at the initial time and a high damping ratio as the output reaches the desired setpoint. At the same time, it enables a fast convergence in finite time and eliminates the singularity problem with the upper bound of an uncertain term, which cannot be measured in practice, by using a simple adaptation law. To improve the efficiency of a system in the constant torque region, the control system incorporates the maximum torque per ampere (MTPA) algorithm. The stability of the nonlinear sliding surface is guaranteed by Lyapunov stability theory. Moreover, a simple sliding mode observer is used to estimate the load torque and system uncertainties. The effectiveness of the proposed nonlinear SMC scheme is verified using comparative experimental results of the linear SMC scheme when the speed reference and load torque change under system uncertainties. From these experimental results, the proposed nonlinear SMC method reveals a faster transient response, smaller steady-state speed error, and less sensitivity to system uncertainties than the linear SMC method.

Effect of Slip-Controlled Torque Converter Damper Clutch in 5-Speed Automatic Transmission on Slip Rate and Fuel Economy (5속 A/T용 자동변속기 토크컨버터 댐퍼클러치 슬립제어가 슬림율과 연비에 미치는 영향)

  • Lee, Gee-Soo;Kim, Deok-Jung;Kim, Hyun-Chul;Na, Byung-Chul;Heo, Hyung-Seok;Lee, Ho-Gil;Jang, Jae-Duk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.74-80
    • /
    • 2009
  • The objective of this paper was to investigate the slip rate and the slip frequency number of damper clutch of torque converter in 2.4L passenger vehicle with 5-speed A/T and analyze the effect of slip control and control strategy on driving characteristics and the fuel economy. The newly developed torque converter with the more durable wet friction material and the slip-controlled damper clutch system, the DCC system, was installed, which was easily compatible and amendable of the lock-up clutch of the base system. The vehicle has been tested on the fuel economy modes such as FTP-75, HWFET and NEDC (ECE15+EUDC) driving cycle at chassis dynamometer. The DCC mode (II), of which the control strategy had both the lock-up and the slip-controlled clutch, and the DCC mode (I) with full slip-controlled clutch were compared with the base system with only the lock-up clutch. As the research result, comparison to base system, the fuel consumption of the vehicle with the DCC control (II) was effectively improved by 6.6% and 7.7% on FTP-75 and NEDC mode.

Current Control of the Forklift using a Fuzzy Controller

  • Bae, Jong-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2552-2556
    • /
    • 2005
  • In general, the forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by current control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the forklift is demanded the robust drive mode. Some cases of the mode, there aretrouble in torque control following slope capacity. The control is sensitive concerning about slope angle and output speed, various control method is studied for stability of speed control. In this paper, I apply current control for the self-tuning using the fuzzy controller to obtain robust, stable speed control and use stable, high efficiency control using DSP as main controller for high speed processor, embody dynamic characteristic of control compared the PI controller to the fuzzy controller.

  • PDF

THE SPEED CONTROL OF DC SERIER WOUND MOTOR USING DSP (TMS320F240)

  • Bae, Jong-Il;Je, Chang-Woo;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.371-376
    • /
    • 2003
  • In general, the electronic forklift driven by DC motor drive system is used in the industrial field. Classically, the DC motor is controlled by speed control using proportion control method, by output torque following the load on the plane like a manual operation. But in the industrial field, the electronic forklift is demanded the robust drive mode. Some cases of the mode, there are trouble in torque and speed control following slope capacity. The control is sensitive concerning with slope angle and output speed, various control method is studied for stability of speed control. We apply speed controller for the self-tuning using DSP(TMS320F240) as main controller for high speed processor, embody dynamic characteristic of control compared the PI control to the fuzzy control.

  • PDF

Vibration Control of a Very Flexible Robot Arm-via Piezoactuators (압전 작동기를 이용한 매우 유연한 로봇 팔의 진동 제어)

  • 신호철;최승복
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 1996
  • A new control strategy to actively control the vibration of a very flexible single link manipulator is proposed and experimentally realized. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor to produce a desired angular motion is firstly determined by employing a sliding mode control theory on the equivalent rigid dynamics. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, underirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, the desired tip position is favorably accomplished without vibration. Measured control responses are presented in order to demonstrate the efficiency of the proposed control methodology.

  • PDF

Design of an Automatic Winch System for Small Fishing Vessel (소형 어선의 자동 권양 윈치시스템 설계)

  • 이대재;김진건;김병삼
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.157-165
    • /
    • 2000
  • A small hydraulic winch system with an automatic tension control unit was designed to improve the work efficiency of coastal small vessels and the dynamic response characteristics of the winch system operated in the open loop condition was investigated. The inlet and the outlet pressures in hydraulic motor, the torque and the rotating speed of winch drum were measured as a function of time, and the behaviour in autotension mode for stepped load changes was analyzed. The results obtained are summarized as follows : 1. The developed winch system for coastal small vessels will result in better fishing with improved efficiency and lower manpower consumption by remote control of winch system. 2. The rotating delay times of winch drum for on/off operations of solenoid valve were 0.09 see at CW mode and 0.04 sec at CCW mode, respectively. After the solenoid valve was controlled, response characteristics were unstable slightly but showed good tracking behaviour over short time. 3. The driving torque of winch system in autotension mode was kept almost constant of 55.9 kgf·m, and 11.1 then the rotating speed of winch drum was kept almost constant of 5.1 rpm in the larger torque than 55.9 kgf·m and 11.1 rpm in the lower torque than that. 4. The 5% settling times in the transient response characteristics of autotension mode under rapid increasing and decreasing conditions of load were 0.12 sec and 0.2 sec, respectively, and then the rotating speeds were 11 rpm and 5.3 rpm, respectively. 5. The tracking behaviour of torque and rotating speed by remote control operation were stable within 0.23 sec at CW mode and 0.37 sec at CCW mode, respectively.

  • PDF

Braking Torque Closed-Loop Control of Switched Reluctance Machines for Electric Vehicles

  • Cheng, He;Chen, Hao;Yang, Zhou;Huang, Weilong
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.469-478
    • /
    • 2015
  • In order to promote the application of switched reluctance machines (SRM) in electric vehicles (EVs), the braking torque closed-loop control of a SRM is proposed. A hysteresis current regulator with the soft chopping mode is employed to reduce the switching frequency and switching loss. A torque estimator is designed to estimate the braking torque online and to achieve braking torque feedback. A feed-forward plus saturation compensation torque regulator is designed to decrease the dynamic response time and to improve the steady-state accuracy of the braking torque. The turn-on and turn-off angles are optimized by a genetic algorithm (GA) to reduce the braking torque ripple and to improve the braking energy feedback efficiency. Finally, a simulation model and an experimental platform are built. The simulation and experimental results demonstrate the correctness of the proposed control strategy.

Direct Torque Control Scheme of Switched Reluctance Motor using Novel Torque Sharing Function (토크분배함수를 이용한 SRM의 적접토크제어기법)

  • Ahn, Jin-Woo;Lee, Dong-Hee;Kim, Tae-Hyoung;Liang, Jianing
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.138-140
    • /
    • 2007
  • A novel non-linear logical torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

Maximum Torque Control of IPMSM for Electric Vehicle Drive (전기자동차 구동을 위한 IPMSM의 최대 토크제어)

  • 이홍균;이정철;정동화
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • Interior permanent magnet synchronous motor (IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. The paper is proposed maximum torque control of IPMSM for electric vehicle drive. The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current ${^i}_d$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for electric vehicle drive, the operating characteristics controlled by maximum torque control are examined in detail by simulation.