• Title/Summary/Keyword: Torque Measuring

Search Result 255, Processing Time 0.022 seconds

Development of Micro-hole Drilling Machine and Assessment of cutting Performance (마이크로흘 드릴링 머신의 개발 및 절삭성능 평가)

  • 김민건;유병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.39-44
    • /
    • 2001
  • In this paper, drill fred mechanism, cutting depth measuring device and sensing buzzer of drill contact were investigated in order to develop the micro-hole drilling machine. Also, measuring device of cutting resistance was developed in order to estimate cutting resistance from change of cutting condition. The results show that extremely-low fled rate(less then $17{\mu}m/S$${\mu}{\textrm}{m}$ /s) can be done and cutting depth can be measured by up to 1${\mu}{\textrm}{m}$ with developed drilling machine. Accordingly we could assemble a very cheap micro-hole drilling machine($\phi$ 0.05~0.5 mm). Also we got the some properties of cutting performance i.e. under the same condition, cutting torque decreases as increase of spindle speed and rapid fled of drill brings about the inferior cutting state under low spindle speed.

  • PDF

Study for the Indirect Measuring Method of Operational Force in Surgical Robot Instrument (복강경 수술용 로봇 인스트루먼트의 간접적 작동력 측정법에 관한 연구)

  • Kim, Chi-Yen;Lee, Min-Cheol;Lee, Tae-Kyung;Choi, Seung-Wook;Park, Min-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.840-845
    • /
    • 2010
  • This paper proposes the method indirectly measuring the operating force of the end-effect tip of surgical robot instrument which conducts the surgical operation in the body on behalf of the surgeon's hand. Due to the size and safety obligation to the surgical robot instrument, it is difficult to measure the operation force of its tip like grasping force. However the instrument is driven by cable-pulley torque transmission mechanism and when some force is occurred at the tip, then the reaction force appears on the cable as additional tension. Based on this phenomenon, this paper proposes a method to estimate the operating force from measuring reaction force against the driving motor by using a loadcell. And it induces mathematical equation to calculate the force from loadcell by approaching the modulus of elasticity to high order polynomial. And this paper proves the validity of proposed mechanism by experimental test.

Magnetostriction and Magnetic Anisotropy Measurement Using High Efficiency Small EIectromagnet (고능률 소형 전자석에 의한 자왜 및 자기이방성 측정)

  • 이용호;신용돌;김병걸;민복기;송재성
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.179-183
    • /
    • 1994
  • A high efficiency small electromagnet (22 mm air gap and $40{\times}25mm^{2}$ core's cross section) suitable for measuring magnetostriction and magnetic anisotropy was biult. The magnet could be minaturized by reducing the measuring space and time. The excitation current of the electromagnet was supplied for only a few second of measuring time. Cooling system of the electromagnet could be eliminated since the dissipation energy was very small. An 0.5 T magnetic field was generated with 180 W power consumption. The values of magnetostriction and magnetic anisotropy were measured with a very sensitive capacitance cell with resolution of $10^{-8}$ and 1 nJ. The torque was calibrated using a soft magnetic ribbon's shape anisotropy.

  • PDF

Development and Verification of Small-Scale Rotor Hover Performance Test-stand (소형 로터 블레이드의 제자리 비행 성능 시험장치 개발 및 검증)

  • Lee, Byoung-Eon;Seo, Jin-Woo;Byun, Young-Seop;Kim, Jeong;Yee, Kwan-Jung;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.975-983
    • /
    • 2009
  • This paper presents the work being carried out in order to deduce hover performance of a small-scale single rotor blade as a preliminary study of a small coaxial rotor helicopter development. As an initial research, a test stand capable of measuring thrust and torque of a small-scale rotor blade in hover state was constructed and fabricated. The test stand consists of three parts; a rotating device, a load measuring sensor and a data acquisition system. Thrust and torque were measured with varying collective pitch angle at fixed RPM. Through this research, hover performance tests were conducted for a small-scale single rotor blade operating in low Reynolds number ($Re\;{\approx}3{\times}10^5$), as well as for verifying the test stand itself for acquiring hover performance.

Which Information is Commonly Used for Patients with Stroke at Rehabilitation Settings?

  • Lee, Haejung;Song, Jumin
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.6
    • /
    • pp.392-399
    • /
    • 2015
  • Purpose: This study investigated whether the strength imbalance between two muscles can affect the score of EMG based biofeedback game, and whether the EMG based biofeedback game score can be used as predictable indicator of the degree of muscle balance alternating the conventional strength measuring equipment. Methods: 40 participated in this study. Biodex was used to measure the peak torque/weight in order to calculate the muscle strength balance index between plantar flexor and dorsiflexor of ankle joint. And muscle balance index (MBI) was calculated. The EMG biofeedback game scores of dorsiflexor and plantar flexor were acquired, so that the EMG electrodes were attached at tibialis anterior and gastrocnemius. The relationship between the game score and the muscle balance index were analyzed. Results: There was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the peak torque/weight of plantar flexor (r=-0.70). And there was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the game score of plantar flexor (r=-0.83). Conclusion: The EMG biofeedback game score had significant relationship with muscle imbalance at ankle joint, so it seems that the game score can be used for predicting the degree of muscle imbalance as a parameter.

Study on the Correlation Between the Imbalance of Muscle Strength and the Score of EMG-Biofeedback Game at Ankle Joint in Healthy Adults

  • Ko, Yu-Min;Park, Seol;Lim, Chang-Hun;Lee, Woo-Jin;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.6
    • /
    • pp.386-391
    • /
    • 2015
  • Purpose: This study investigated whether the strength imbalance between two muscles can affect the score of EMG based biofeedback game, and whether the EMG based biofeedback game score can be used as predictable indicator of the degree of muscle balance alternating the conventional strength measuring equipment. Methods: 40 participated in this study. Biodex was used to measure the peak torque/weight in order to calculate the muscle strength balance index between plantar flexor and dorsiflexor of ankle joint. And muscle balance index (MBI) was calculated. The EMG biofeedback game scores of dorsiflexor and plantar flexor were acquired, so that the EMG electrodes were attached at tibialis anterior and gastrocnemius. The relationship between the game score and the muscle balance index were analyzed. Results: There was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the peak torque/weight of plantar flexor (r=-0.70). And there was negative correlation between the muscle balance index between plantar flexor and dorsiflexor and the game score of plantar flexor (r=-0.83). Conclusion: The EMG biofeedback game score had significant relationship with muscle imbalance at ankle joint, so it seems that the game score can be used for predicting the degree of muscle imbalance as a parameter.

The Effects of Intake Swirl Flow en Lean Combustion in an Sl Engine (흡입 스월유동이 Sl기관의 희박연소에 미치는 영향)

  • 정구섭;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1298-1307
    • /
    • 2001
  • Recently, the efforts to improve fuel economy and to reduce pollutant emission have become the main subject in the development of a gasoline engine. A lean combustion engine admitted as the best alternative is relatively lower fuel consumption rate and exhaust emissions. In this study, it is focused on intensifying intake flow field as one of methods to improve the performance of the lean combustion. First, three different types of suitable swirl control valve(SC7) with high swirl and tumble ratio are selected through steady flow experiment, being installed in a spark ignition engine. The relationship between lean misfire limit and torque was investigated with injection timing and spark ignition timing. Also, the effect of intensified swirl new on the combustion Stability and exhaust emissions was experimently examined by the measuring in-cylinder pressure and combustion variation. The results show that the engine with swirl control calve is superior to other conventional engine on the lean misfire limit, specific torque, combustion variation and emission, and the appropriate injection timing and spark ignition timing exist according to the type of swirl control valve.

  • PDF

MEASUREMENT AND CHARACTERIZATION OF FRICTION IN AUTOMOTIVE DRIVESHAFT JOINTS

  • Lee, C.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.723-730
    • /
    • 2007
  • The typical design of automotive driveshafts generally utilizes Constant Velocity(CV) joints as a solution to NVH. CV joints are an integral part of vehicles and significantly affect steering, suspension, and vehicle vibration comfort levels. Thus, CV joints have been favored over universal joints due to the constant velocity torque transfer and plunging capability. Although CV joints are common in vehicle applications, current research works on modeling CV joint friction and assumes constant empirical friction coefficient values. However, such models are long known to be inaccurate, especially under dynamic conditions, which is the case for CV joints. In this paper, an instrumented advanced CV joint friction apparatus was developed to measure the internal friction behavior of CV joints using actual tripod-type joint assemblies. The setup is capable of measuring key performance of friction under different realistic operating conditions of oscillatory speeds, torque and joint installation angles. The apparatus incorporates a custom-installed triaxial force sensor inside of the joint to measure the internal CV joint forces(including friction). Using the designed test setup, the intrinsic interfacial parameters of CV joints were investigated in order to understand their contact and friction mechanisms. The results provide a better understanding of CV joint friction characteristics in developing improved automotive driveshafts.

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

Development and Evaluation of the Attrition Coupled Bioreactors for Enzymatic Hydrolysis of Biomass; Agitated Bead Type Bioattritor for Enzymatic Hydrolysis of Cellulose (Biomass의 고효율 효소당화에 의한 적합한 Attrition Coupled Bioreactor개발에 관한 연구 ; Agitated Bead Type Bioattritor를 활용한 섬유소 당화)

  • 이용현;박진서;윤대모
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.78-86
    • /
    • 1989
  • The effective saccharification of cellulosic biomass to glucose is the most critical step for the conversion of renwable biomass to alternative liquid fuel. The enzymatic hydrolysis of biomass can be significantly enhanced provide the attrition milling media is added during hydrolysis. The enhancing mechanism of hydrolysis reaction in an agitated bead system was investigated. An attrition-reactor (bioattritor) which installed specially designed torque measuring apparatus was developed, and the potimal saccharification conditions of bioattritor were determined. The relationship between the power consumption required for agitation of attrition-milling media and enhanced extent of hydrolysis of biomass was compared to evaluatic economic feasibility of the process.

  • PDF