• Title/Summary/Keyword: Torque Measuring

Search Result 254, Processing Time 0.028 seconds

Comparison of fit accuracy and torque maintenance of zirconia and titanium abutments for internal tri-channel and external-hex implant connections

  • Siadat, Hakimeh;Beyabanaki, Elaheh;Mousavi, Niloufar;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.4
    • /
    • pp.271-277
    • /
    • 2017
  • PURPOSE. This in vitro study aimed to evaluate the effect of implant connection design (external vs. internal) on the fit discrepancy and torque loss of zirconia and titanium abutments. MATERIALS AND METHODS. Two regular platform dental implants, one with external connection ($Br{\aa}nemark$, Nobel Biocare AB) and the other with internal connection (Noble Replace, Nobel Biocare AB), were selected. Seven titanium and seven customized zirconia abutments were used for each connection design. Measurements of geometry, marginal discrepancy, and rotational freedom were done using video measuring machine. To measure the torque loss, each abutment was torqued to 35 Ncm and then opened by means of a digital torque wrench. Data were analyzed with two-way ANOVA and t-test at ${\alpha}=0.05$ of significance. RESULTS. There were significant differences in the geometrical measurements and rotational freedom between abutments of two connection groups (P<.001). Also, the results showed significant differences between titanium abutments of internal and external connection implants in terms of rotational freedom (P<.001). Not only customized internal abutments but also customized external abutments did not have the exact geometry of prefabricated abutments (P<.001). However, neither connection type (P=.15) nor abutment material (P=.38) affected torque loss. CONCLUSION. Abutments with internal connection showed less rotational freedom. However, better marginal fit was observed in externally connected abutments. Also, customized abutments with either connection could not duplicate the exact geometry of their corresponding prefabricated abutment. However, neither abutment connection nor material affected torque loss values.

Influence of Walking With High-Heeled Shoes on the Knee Joint of Obese Women (하이힐 보행이 비만여성의 슬관절에 미치는 영향)

  • Chang, Yun-Hee;Lee, Wan-Hee
    • Physical Therapy Korea
    • /
    • v.14 no.3
    • /
    • pp.23-31
    • /
    • 2007
  • The purpose of this study was to determine the influence of high-heeled shoes on walking of obese women as it was already proven an extrinsic factor of knee osteoarthritis in women with normal weight. In this study the aimed therefore in particular was to utilize high-heeled shoes in proving it's causal influence on knee osteoarthritis by measuring the angle and torque of the knee joint. Fifteen obese women (BMI>25 $kg/m^2$) were measured in their twenties. Each angle and torque of their knee joints during walking on 6.5 cm high-heeled shoes and with a bare feet, were compared with each other and analyzed with a 3D motion analysis system. There was no significant difference in walking speed, cadence and stride length between the two conditions. However, there was a significant increase in a double limb support time and the stance phase when walking on high-heeled shoes as when walking with bare feet. The peak knee flexion angle and peak knee varus torque was higher when walking on high-heeled shoes than with bare feet. On the contrary, the peak knee flexion angle in the swing phase was not statistically different. The prolongation of peak knee varus torque was also proven. There was a significant increase in peak knee varus torque in the initial and last stance phases during walking on high-heeled shoes as compared to walking on bare feet. Through the above results, it was proven that when obese women walked on high-heeled shoes, rather than with bare feet, peak knee flexor and varus torque increased along with the changes of the in knee joint angle. Therefore, the influence of high-heeled shoes might be a significant intrinsic factor in knee osteoarthritis of obese women.

  • PDF

High-Performance Elevator Traction Using Direct Torque Controlled Induction Motor Drive

  • Arafa, Osama Mohamed;Abdallah, Mohamed Elsayed;Aziz, Ghada Ahmed Abdel
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1156-1165
    • /
    • 2018
  • This paper presents a detailed realization of direct torque controlled induction motor drive for elevator applications. The drive is controlled according to the well-known space vector modulated direct control scheme (SVM-DTC). As the elevator drives are usually equipped with speed sensors, flux estimation is carried out using a current model where two stator currents are measured and accurate instantaneous rotor speed measurement is used to overcome the need for measuring stator voltages. Speed profiling for a comfortable elevator ride and other supervisory control activities to provide smooth operation are also explained. The drive performance is examined and controllers' parameters are fine-tuned using MATLAB/SIMULINK. The blocks used for flux and torque estimation and control in the offline simulation are compiled for real-time using dSPACE Microlabox. The performance of the drive has been verified experimentally. The results show good performance under transient and steady state conditions.

Experimental and statistical investigation of torque coefficient in optimized surface piercing propeller

  • Masoud Zarezadeh;Nowrouz Mohammad Nouri;Reza Madoliat
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.53-72
    • /
    • 2024
  • The interaction of the blade of surface-piercing propellers (SPPs) with the water/air surface is a physical phenomenon that is difficult to model mathematically, so that such propellers are usually designed using empirical approaches. In this paper, a newly developed mechanism for measuring the torque of SPPs in an open water circuit is presented. The mechanism includes a single-component load cell and a deformable torque sensor to detect the forces exerted on the propeller. Deformations in the sensor elements lead to changes in the strain gauge resistance, which are converted into voltage using a Wheatstone bridge. The amplified signal is then recorded by a 16-channel data recording system. The mechanism is calibrated using a 6-DoF calibration system and a Box-Behnken design, achieving 99% accuracy through multivariate regression and ANOVA. Finally, the results of performance tests on a 4-blade propeller were presented in the form of changes in the torque coefficient as a function of feed rate. The results show that the new mechanism is 8% more accurate than conventional empirical methods.

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

A STUDY ON THE TORQUE VALUES IN THE DIFFERENT IMPLANT SYSTEM (수종 임플랜트 시스템에서의 회전력에 관한 연구)

  • Moon, Ick-Hun;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.335-353
    • /
    • 1995
  • The purpose of this study was to the determine the optimal torques values to tighten the retaining screw. 3-different implant system tested were as follows : Branemark implant system$(3.75mmD{\times}100mm)$, Steri-Oss implant system$(3.8mmD{\times}10mm)$. One fixtures of each implant system was mounted into the epoxy resin block and abutment/superstructure complex was constructed. Eighty dental college students(male : 40, female : 40) of Chosun University were selected and were asked to tighten the retaining screws. Abutment/superstructure complex of each implant system was tightened to the maximum torque by use of hand-held screw driver, and then torque value was measured with torque value was measured with torque driver(Tohnichi torque driver, model 20 FTD, Tohnichi MFG, Co., LTD., Tokyo, Japan). Abutment/superstructure complex of each implant system was titghtened to each torque of 10 N-cm, 20 N-cm and 30 N-cm, and then the dynamic load(vertical & diagonal load) was applied to the abutment / superstructure complex. The gap between abutment/superstrure in each implant system was measured with 3-dimensional measuring microscope(model No. 850, Germany). The results were as follow : 1. Torque values according to the individual subjects showed wide range. 2. Torque values according to sex showed statistical significant difference. Those are as follows : in case of male, $9.38{\pm}2.93$ N-cm ; incase of female, $7.80{\pm}2.25$ N-cm. 3. Torque values according t implant systems showed statistical significant difference. Those are as follows : in ase of Branemark implant system, $6.54{\pm}1.54$ N-cm : in ase of Steri-Oss implant system, $10.1{\pm}2.88$ N-cm ; in case of IMZ implant system, $9.18{\pm}2.17$ N-cm. 4. The more torque value of tightening screw was increased, the less the gap was after the vertical and diagonal loading. 5. The gap after the diagonal loading was greater than that after the vertical loading. 6. The magnitude of gap between abutment/superstructure in order of IMZ, Steri-Oss, Branemark implant system after the verical and diagonal loading. 7. The gap under the diagonal loading after applying 30 N-cm torque showed no statistical significant difference in cases of the Branemark system and the Steri-Oss implant system but it showed significant different in case of the IMZ implant system.

  • PDF

Comparative study of removal torque of 3 different hydroxyapatite coated implants in the femur of rabbits (가토의 대퇴골에 식립한 3종류의 수산화인회석 코팅 임플란트에 대한 제거회전력 비교 연구)

  • Kim, Sang-Soo;Lee, Ju-Hyung;Yu, Seok-Hyun;Lee, Hyung-Ju;Moon, Jee-Won;Park, In-Sook;Sohn, Dong-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.1
    • /
    • pp.49-53
    • /
    • 2011
  • Introduction: This study compared the strength of osseointegration as determined by the resistance to reverse torque rotation of three different hydroxyapatite coated implants in the rabbit femur model. Materials and Methods: Three hydroxyapatite coated implants (HAPTITE), Tapered Screw-Vent (TSV) and BioTite-H - were used. A total of 40 implants were placed in the femur of 20 adult male rabbits. The animals were divided into two groups. In group A (n=10); one HAPTITE was placed into each right femur and one TSV was placed into each left femur. In group B (n=10); one HAPTITE was placed into each right femur and one BioTite-H was placed into each left femur. Five rabbits of each group were sacrificed at 4 and 8 weeks. The implants were removed by reverse torque rotation using a digital torque-measuring device. A total of 40 implants in 20 rabbits were used for the removal torque measurements. Results: In the Group A, 4 weeks after implant placement, the mean removal torque for the HAPTITE and TSV was $70.7{\pm}31.6$ N cm and $28.9{\pm}15.1$ N cm, respectively. Eight weeks after implant placement, the mean removal torque for the HAPTITE and TSV was $87.9{\pm}26.2$ N cm and $54.9{\pm}22.4$ N cm, respectively. In the Group B, 4 weeks after implant placement, the mean removal torque for the HAPTITE and BioTite-H was $58.0{\pm}29.6$ N cm and $37.7{\pm}14.1$ N cm, respectively. Eight weeks after implant placement, the mean removal torque for the HAPTITE and BioTite-H was $91.4{\pm}47.1$ N cm and $30.8{\pm}9.8$ N cm. HAPTITE showed a higher removal torque than the other implants. Conclusion: These results suggest that HAPTITE increases the strength of osseointegration significantly as determined by the resistance to reverse torque rotation.

Differences in percussion-type measurements of implant stability according to height of healing abutments and measurement angle (임플란트 healing abutment 높이와 타진각도에 따른 타진방식 임플란트 안정성 측정기기의 수치 차이)

  • Park, Yang-Hoon;Leesungbok, Richard;Lee, Suk-Won;Paek, Janghyun;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.278-286
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of healing abutment height and measurement angle on implant stability when using Periotest and AnyCheck. Materials and methods: 60 implants were placed into artificial bone blocks. After implant insertion, 2, 3, 4 and 5 mm healing abutments were installed on 15 specimens, respectively. Insertion torque value, implant stability test, Periotest value were measured. Insertion torque value was controlled between 45 - 55 Ncm. AnyCheck was used for measuring implant stability test and Periotest M was used for measuring Periotest value. Implant stability test and Periotest value were measured at the angles of 0 and 30 degrees to the horizontal plane. Measured values were analyzed statistically. Results: Insertion torque value had no significant difference among groups. When healing abutment height was higher, implant stability test and Periotest value showed lower stability. Also when measurement angle was decreased, implant stability test and Periotest value showed lower stability. Conclusion: When measuring stability of implants with percussion type devices, measured values should be evaluated considering height of healing abutments and measurement angle.

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

New Ignition Method and Ignition Recognition Logic for a Microturbine (마이크로터빈의 새로운 점화 기법과 점화 인식 로직 개발)

  • Kim, Gi-Rae;Choi, Young-Kyu;Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.179-186
    • /
    • 2007
  • This paper presents new ignition method and ignition recognition logic for a microturbine. New ignition method is designed by constant speed control of a microturbine with pre-determined time during a ignition period. It make more accurate air-fuel ratio as well as give enough time to ignition system to have full performance under cold temperature. And ignition recognition logic is designed by observing output current change of inverter by generating output torque of a microturbine in the instant of ignition. For filtering a output torque current of inverter with high frequency, we applied a moving average method. So far, ignition recognition is usually implemented by measuring of exhausted gas temperature(EGT) of microturbine. The proposed logic can give more accurate judgement of ignition as well as keep a good working of starting system under out of order a temperature measuring system and biased initial value of EGT sensor. Finally, the two proposed logics are proved by field operating a microturbine under various conditions.