• Title/Summary/Keyword: Torque Measurement

Search Result 386, Processing Time 0.033 seconds

Driveline Output Torque Estimation Using Discrete Kalman Filter (이산 칼만 필터를 이용한 구동 출력 토크 추정)

  • Gi-Woo, Kim
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-75
    • /
    • 2012
  • This paper presents a study on the driveline output torque estimation using a discrete Kalman filter. The in-situ output shaft torque is first measured by a non-contacting magneto-elastic torque transducer. The linear state-space system equations are first derived and the discrete Kalman filter is designed based on the Kalman filter theory to recover the driveline output torque contaminated by random noises. In addition to using torque measurement, the estimation of the output torque using two angular velocities: the output and wheel, is also conducted. The experimental results show that the discrete Kalman filter can be effective for not only removing the random noise in output torque but also estimating the output torque without torque measurement.

Development of a Rotational Torque Calibration System (회전 토크 교정장치 개발에 관한 연구)

  • 김갑순;권영하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2646-2653
    • /
    • 1993
  • A rotational torque calibration system is developed to measure rotational torque of power generating systems and to calibrate non-contact rotational torque measurement systems. The maximum capacity of the developed system is 4.5 N-m. It is composed of a DC motor, a DC generator, a control system, a master torque cell, a slip ling/brush set, supporters, a bed etc. The control system is characterized by the closed-loop control with differential intergrator. Rotational torque measurement test and unit response test are conducted to estimate the accuracy of the developed system. It is found that system maintain high consistency and accuracy with the maximum error of 0.25%, Therefore the developed system can be used to measure the rotational torque of power generating systems and to calibrate non-contact rotational torque measurement systems.

Development of Friction Torque Measurement Device for Spherical Hydrostatic Bearing (구면 정압베어링의 마찰토크 측정장치 개발)

  • 함영복;최영호;박경민;윤소남;김광영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.181-186
    • /
    • 2002
  • Lately, as going on increasing in the demand of high power density(power/weight), it is necessary for hydraulic axial piston pump/motor to operate more high pressure and speed. But in these condition, there are some trouble like as friction loss. To reduce this friction loss, hydrostatic bearing is used far axial piston pump/motor frequently. In general, it is difficult to measure accurate friction torque of spherical hydrostatic bearing in the use of the existing devices. So, we have developed the measurement device using the reaction torque sensor to obtain the pure friction torque, fitted in the casing. In this report, we intend to make an introduction about this measurement device for friction torque of the spherical wear part and clarify the effect of friction characteristics on supply pressure and rotational speed with three types of pocket size by using this measurement device.

  • PDF

2 kNm Deadweight Torque Standard Machine in KRISS (한국표준과학연구원의 실하중 토크 표준기)

  • 김민석;박연규;김종호;강대임
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.656-659
    • /
    • 2004
  • As the demand for traceable calibrations of torque measuring devices has considerably increased both in the production sector and in research institutes, suitable standard machines had to be developed at the Korea Research Institute of Standards and Science. Owing to its special design, the small uncertainty of measurement required for the realization of the static torque can be reached (relative uncertainty of measurement < 5$\times$10$^{-5}$ in the measurement range between 500 and 2000 Nm, and < 1$\times$10$^{-4}$ in the measurement range from 10 to 500 Nm). The relative discrepancy between our torque calibration results of 2 kNm and PTB s (Physikalisch Technische Bundesanstalt, Germany) results was less than 2$\times$10$^{-5}$ , which confirming our uncertainty estimation.

  • PDF

Accuracy Evaluation of a Non-Contact Rotational Torque Measurement System by Using Telemeter (원격전송장치를 이용한 비접촉식 회전 토크 측정장치의 정확도 평가)

  • Kim, G.S.;Joo, J.W.;Kwon, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 1994
  • This paper presents manufacturing and evaluation of a non-contact rotational torque measurement system which consists of torque cell, telemeter system, transmitter and receiver coil, transmitter, receiver and telemeter indicator. Static calibration test results show that the system has a maximum uncertaintry of 05% or less. A standar calibration system for rotational torque is used to evaluate the measurement system, As a result, the maximum uncertainty for measuring rotational torque by this system is 2% or less. We may conclude that the measurement system is sufficient to measure rotational torque of shaft in industry.

  • PDF

System Identification of In-situ Vehicle Output Torque Measurement System (차량 출력 토크 측정 시스템의 시스템 식별)

  • Kim, Gi-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.85-89
    • /
    • 2012
  • This paper presents a study on the system identification of the in-situ output shaft torque measurement system using a non-contacting magneto-elastic torque transducer installed in a vehicle drivline. The frequency response (transfer) function (FRF) analysis is conducted to interpret the dynamic interaction between the output shaft torque and road side excitation due to the road roughness. In order to identify the frequency response function of vehicle driveline system, two power spectral density (PSD) functions of two random signals: the road roughness profile synthesized from the road roughness index equation and the stationary noise torque extracted from the original torque signal, are first estimated. System identification results show that the output torque signal can be affected by the dynamic characteristics of vehicle driveline systems, as well as the road roughness.

Evaluation of Torsional Vibration Isolation Damper in Automotive Transmissions Based on In-situ Torque Measurement (토크 측정을 이용한 차량 변속기용 비틀림 진동 절연 댐퍼 평가)

  • Kim, Gi-Woo;Jang, Jae-Duk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.4
    • /
    • pp.377-382
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

Evaluation of Torsional Vibration Isolation Performance Using In-situ Driveline Output Torque Measurement (구동 출력 토크 측정을 이용한 비틀림 진동 절연 성능 평가)

  • Kim, Gi-Woo;Jang, Jae-Duk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.382-387
    • /
    • 2012
  • This paper presents a proof-of-concept study on the evaluation of torsional vibration isolation performance through in-situ output torque measurement by using a non-contacting magneto-elastic torque transducer installed in the vehicle driveline system. The de-trending processing is first conducted to extract the torsional vibration from the measured driveline output torque. In order to estimate the transmissibility, primary performance indicator of a vibration isolator, the magnitude of transmitted torsional vibration with different frequencies is compared. From the conservative estimation results, the torsional damper built in a lock-up clutch of a torque converter is identified to be a vibration isolator. The evaluation results show that the fluid damping by torque converter outperforms the vibration isolation function of a torsional damper, and the isolation performance needs to be enhanced.

  • PDF

The Study on Elongation and Torque Measurement in Large Bolt by using Ultrasonic Technology (초음파를 이용한 대형볼트 신장량 및 체결력 측정연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • This study on the bolt elongation and torque measuring method by ultrasonic nod-destructive method. In the past, The dial gage was used for the elongation measurement of gas turbine bolts. The purpose of this study is to improve the traditional bolt elongation measurement method. The old method using dial gage measures the elongation of the gas turbine bolt. If the length differences among the loading bolts are within the required range, The loading torques of bolts consider as acceptable. But this method can not give the information about torque differences among the loading bolts. It could bring out vibration of turbine due to loading torque differences among the bolts. So the elongation and torque must be measured simultaneously. The new technology using ultrasonic non-destructive method can give the information about bolt elongation and torque. The ultrasonic method basically measures the speed in the bolt material for the calculation the bolt elongation. But the ultrasonic speed varies according to temperature and loading torque of bolts. So the factors of temperature and loading power were investigated and reflected to the calculation of bolt elongation and torque. The results of this study shows the big difference among the bolts torque in the old method and the torque differences among the bolts can be adjusted by reflecting the result of this study. And this torque adjusting method can decrease gas turbine vibration problem due to torque difference among the bolts. So this paper shows ultrasonic method is better than old method for the measurement of bolt elongation and torque.

  • PDF