• Title/Summary/Keyword: Torque Estimation Method

Search Result 190, Processing Time 0.026 seconds

The Iron loss Estimation of IPMSM According to Current Phase Angle

  • Cho, Gyu-Won;Kim, Dong-Yeong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1345-1351
    • /
    • 2013
  • Variable iron loss as function of current phase angle of Interior Permanent Magnet Synchronous Motor(IPMSM) was calculated through Curve Fitting Method(CFM). Also, a magnetic flux density distribution of iron core according to current phase angle was analyzed, and an iron loss calculation was performed including harmonic distortion. The experiment was performed by production of non-magnetizing model for the separation of mechanical loss, and the iron loss was calculated by the measurement of input using power analyzer and output power using dynamometer. Some error was generated between experimental results and calculation value, but an iron loss diminution according to current phase angle followed a same pattern. So, errors were generated by measurement, vibration, noise, harmonic distortion loss, etc.

Real time Compensation Algorithm of Rotor time Constant for Vector Controlled Induction Machine (백터제어 유도전동기의 회전자 시정수 실시간 보상 알고리즘)

  • Jeong, Jin-Uk;Kim, Jin-Kyu;Lee, Deuk-Kee;Kim, Heung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1039-1041
    • /
    • 2000
  • To obtain a high performance in a vector controlled induction machine, it is essential to know the instantaneous position of the rotor flux which depends on the rotor time constant. But the rotor time constant mainly varies due to the temperature rise in the motor winding, so real time compensating algorithm is necessary. This paper proposes that it uses short duration pulses added to the constant flux command current and then resultant torque command current produced by speed controller is utilized for the rotor resistance estimation. This method has advantages with a low computational requirement and does not require voltage sensors. The proposed method is proved by simulations.

  • PDF

On-line Identification of Rotor Resistance for Sensorless Induction Motors Using Variable Rotor Flux (가변 회전자 자속 지령에 의한 센서리스 유도전동기의 회전자 저항 실시간 동정)

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The newly developed speed sensorless control scheme is proposed to estimate both motor speed and rotor resistance simultaneously using variable rotor flux. The rotor flux is given as sinusoidal waveform with an amplitude and a frequency without affecting precise torque control. Especially the proposed method makes the simultaneous estimation of rotor resistance and speed with high precision even though at the low speed area including a few rpm. Moreover, on-line identification of rotor resistance can be performed simply without calculating troublesome trigonometric functions and complicated integral computation. Therefore, the proposed system can be accomplished by using very cheap microprocessors for several applications. The results of the numerical simulations and experiments demonstrate that this method is effective to estimate the speed and on-line identification of rotor resistance for sensorless induction motors.

FATIGUE LIFE ESTIMATION OF IMPLANT USING A FINITE ELEMENT METHOD (유한요소법을 이용한 치아 임플랜트 피로수명 예측)

  • Han In-Sook;Son Jung-Hun;Yang Young-Soo;Lee Seung-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.4
    • /
    • pp.414-420
    • /
    • 2006
  • Purpose : The purpose of this study is to use finite element analysis to predict the fatigue life of an implant system subjected to fatigue load by mastication (chewing force). The reliability and the stability of implant system can be defined in terms of the fatigue strength. Not only an implant is expensive but also it is almost impossible to correct after it is inserted. From a bio-engineering standpoint, the fatigue strength of the dental implant system must be evaluated by simulation (FEA). Material and Methods Finite element analysis and fatigue test are performed to estimate the fatigue strength of the implant system. Mesh of implant is generated with the actual shape and size. In this paper, the fatigue strength of implant system is estimated. U-fit (T. Strong, Korea, internal type). The stress field in implant is calculated by elastic-plastic finite element analysis. The equivalent fatigue stress, considering the contact and preload stretching of a screw by torque for tightening an abutment, is obtained by means of Sine's method. To evaluate the reliability of the calculated fatigue strength, fatigue test is performed. Results: A comparison of the calculated fatigue strength with experimental data showed the validity and accuracy of the proposed method. The initiation points of the fatigue failure in the implant system exist in the region of high equivalent fatigue stress values. Conclusion: The above proposed method for fatigue life estimation tan be applied to other configurations of the differently designed and improved implant. In order to prove reliability of prototype implant, fatigue test should be executed. The proposed method is economical for the prediction of fatigue life because fatigue testing, which is time consuming and precision-dependent, is not required.

A New Simple Sensorless Control Method for Switched Reluctance Motor Drives

  • Xin Kai;Zhan Qionghua;Luo Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.52-57
    • /
    • 2006
  • In this paper, a new 'impedance sensing' method is described. This method overcomes the shortcomings of the impedance sensing method. According to the new method, sensing voltage pulse is applied to the idle phase in the minimum inductance region and the beginning of the increasing inductance region to detect rotor position. The negative torque produced by the sensing voltage pulse can be neglected in the minimum inductance region and the efficiency of SRM is improved. In the minimum inductance region the back electromotive force (EMF) can be neglected. And in the increasing inductance region the EMF opposes the rise of current in the phase, so the position estimation scheme is reliable. Therefore the new 'impedance sensing' method is sufficiently precise even under the high back EMF effect. The adjustment of turn-on angle and turn-off angle is also easy to be realized. The technique is very useful in applications where cost or size is primary concerns, such as electric bicycle drives. Experimental results are presented to verify the proposed method.

High Performance Speed Control of IPMSM using Neural Network PI (신경회로망 PI를 이용한 IPMSM의 고성능 속도제어)

  • Lee, Jung-Ho;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.315-320
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fired gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

The Sensorless Control of PMSM Using the Coordinate Transform and Differential Method (좌표 변환과 미분 기법을 이용한 PMSM의 센서리스 제어)

  • Choi, Chul;Won, Tae-Hyun;Park, Sung-Jun;Park, Han-Woong;Kim, Chul-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • PMSM(permanent magnet synchronous motor) are widely used in industrial and home appliance because of their high torque to inertia ratio, superior power density, and high efficiency For the high control performance, accurate information of rotor position Is essential. In recent, sensorless algorithms are much studied due to high cost problem of position sensor and low reliability in harsh environment. In the proposed method, a differential linkage flux is used for the estimation of rotor position. The differential magnetic field flux is calculated by the voltage equations and measured phase current without any integration and differential calculus. Instead of linkage flux calculation with differential operation, a new mathematical differential method is introduced by a-$\beta$ transformation. The proposed novel position sensorless speed control scheme is verified through experimental results.

Characteristic of Dual Air Gap AFPM along Flux Position Estimation (양면 축방향 영구자석 전동기에서 자속위치 검출에 따른 특성)

  • Hong, Mun-Hwan;Kim, Chul-Ho;Lee, U-Seok;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.828-830
    • /
    • 2002
  • Axial Flux Permanent Magnet motor could widely be used for low speed and high torque applications. In this paper, to analyse the sensor positioning effect of AFPM motor which has a new concentric winding method and to calibrate the switching timing according to speed, prototype motor is manufactured. As a result of experiment, advance angle from 30 degree to 45 degree of sensor position is more proper. So, this results can be used for design of sensor position to improve characteristic of the dual gap AFPM with coreless and slotless.

  • PDF

Prediction of Machine Tool's Energy Consumption during the Cutting Process (공작기계의 절삭공정 소비 에너지 예측기술)

  • Lee, Chan-Hong;Hwang, Jooho;Heo, Segon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.329-337
    • /
    • 2015
  • In this paper, a simulation based estimation method of energy consumption of the spindle and feed drives for the NC machine tool during the cutting process is proposed. To predict energy consumption of the feed drive system, position, velocity, acceleration and jerk of the table are analyzed based on NC data and then the power and energy are calculated considering friction force and mass of the stages. Energy consumption of the spindle is estimated based on models from acceleration motion of rotating parts, friction torque and power loss of motors. Moreover, simulation models of cutting power and energy for the material removal along the NC tool paths are proposed.

Study on the Aid Control Algorithm for the Power-Assisted Smart Wheelchair (힘 보조형 스마트 휠체어를 위한 차량 제어 알고리즘 구현)

  • Kong, Jung-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3360-3365
    • /
    • 2011
  • This paper deals with method to measure the user's driving-will force and to control the power-assisted wheelchair. To solve this problem, we extract the user's driving-will by using the mathematical motor model. And then, we get the linear and angular velocity at the center of the vehicle. Wheel velocities are also measured from center velocity. Finally, power-assisted electric wheelchairs are controlled by these data. Here all processes are verified by simulation.