• Title/Summary/Keyword: Torque Converter

Search Result 262, Processing Time 0.023 seconds

Test results of an inverter system for 750kW gearless wind turbine (750kW gearless 풍력발전기 인버터 시험)

  • Son, Yoon-Gyu;Suh, Jae-Hak;Kwon, Sei-Jin;Jang-Seung-Duck;Oh, Jong-Seok;Hwang-Jin-Su;Kang, Sin-Il;Park, Ga-Woo;Kwon, O-Jung;Chung-Chin-Hwa;Han-Kyung-Seop;Chun-Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.59-63
    • /
    • 2005
  • The 800-kW PM (permanent magnet) synchronous generator is developed as a wind power generator. The matching converter is designed to control the torque and power depending on the wind speed regime. The generator starts to generate the power at the speed of 9 rpm and the rated output is generated at the speed of 25 rpm. The rated output power of an inverter is 750 kW when the PM synchronous generator is delivering 800 kW to the inverter. The inverter is specially designed to perform the maximum power point tracking (MPPT) at the low wind speed regime that is typical wind environment in Korea. The inverter test was done with a 2 MW M-G system at KERI (Korea Electric Research Institute). The M-G set has a 2 MW motor driver and a 38:1 gear to match the speed between the motor and the PM generator. The torque simulating the wind is applied to the PM generator by a DC motor. The test results show the inverter efficiency of $94.3\%$ at the rated power generating condition. The measured values show that the MPPT algorithm is working well. Overall reliability will be verified through the long-term site test.

  • PDF

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

Review of BLAC Motor and Drive Technology for Electric Power Steering of Vehicles (자동차용 EPS의 BLAC 모터 및 제어기술의 고찰)

  • Cho, Kwan-Yuhl;Kim, Hak-Wone;Cho, Young-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4083-4094
    • /
    • 2011
  • The Electric Power Steering (EPS) has been applied to the vehicles due to its better fuel efficiency, better steering feel, and the compact volume compared to the hydraulic power steering. The brushed PM (Permanent Magnet) DC motors had been adopted in most of the EPS systems until several years ago due to its easy control and a simple hardware configuration of the power converter, but nowadays the BLAC (Brushless AC) motor is becoming more popular for the EPS system because of its high efficiency and long lifetime. This paper reviews the configuration of the EPS system and the BLAC motor and drive technologies based on the papers published recently. The torque ripple reduction for steering feel and the fault detection algorithms for safety are also reviewed.

Implementation of Multi-Motor Controller Based on a Single Microcontroller (단일 마이크로컨트롤러 기반 다중 모터제어기 구현)

  • Kwon, Jae-Min;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.237-243
    • /
    • 2015
  • In this paper, we consider a cascaded type of control architecture for a multi motor-based feedback control system and propose an ADC (Analog to Digital Converter) resource allocation method to efficiently utilize the limited ADC resources. The purpose of the resource allocation method is to minimize both the motor position measurement error and the d-q current measurement error. The cascaded type of control architecture is applied in parallel to each motor to independently control the speed of a motor in the multi motor control system. All the control algorithms are implemented by software using a single microcontroller without using additional microcontrollers. It is illustrated by experiments that the speed and the torque of each motor are controlled precisely by the proposed control architecture with the efficient ADC allocation method.

Efficiency and Power Factor Improvement of Induction Motor Using Single-Phase Back Rectifier (단상 강압 정류기를 이용한 유도전동기의 효율 및 역률 개선)

  • 문상필;이현우;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • Usually, much harmonics are included and cause harmonic loss of motor, torque pulsation, electro-magnetic noise and shock etc. by switching function of inverter when drive induction motor variableness inside. It applied partial resonant Buck converter and three phase voltage type SPWM inverter circuit to induction motor driving system in this paper that see to solve such problem. Changed operation condition variously to do input current of circuit that propose sine-wave by unit power factor almost and capacitor supplied bringing back to life voltage by power supply arranging properly assistance diode and electric power switching. Power factor and efficiency improved as that minimize variation of input at power supply voltage polarity reverse by that add voltage reversal function. Also, by using output filter, reduced harmonic of output line to line voltage components, and introduce state space analysis and forecast operation of rectifier. Such all items confirmed validity through simulation and an experiment.

Performance Assessment of Two Horizontal Shroud Tidal Current Energy Converter using Hydraulic Experiment (수리실험을 통한 수평 2열 쉬라우드 조류에너지 변환장치 성능평가)

  • Lee, Uk-Jae;Choi, Hyuk-Jin;Ko, Dong-Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, the two horizontal shroud tidal current energy converter, which can generate power even under low flow speed conditions, was developed. In order to determine the shape of the shroud system, a three-dimensional numerical simulation test was conducted, and a 1/6 scale down model was made to perform a hydraulic model experiment. The hydraulic model experiment was performed under four flow conditions, and the flow speed, torque, and RPM were measured for each experimental case. As a result of the numerical simulation test, it was found that the flow speeds passing through the nozzle were increased by about 2~3 times in the cylinder, and when the extension ratio was 2:1, the highest flow speed was shown. In addition, it was found that the flow speeds increased 2.8 times when the diameter ratio between the nozzle and the cylinder was 1.5:1. Meanwhile, as a result of the hydraulic model experiment, it was found that when the tip speed ratio was between 1.75 and 2, the power coefficient was 0.32 to 0.34.

An Experimental Fault Analysis and Speed Control of an Induction Motor using Motor Solver

  • Sengamalai, Usha;Chinnamuthu, Subramani
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.761-768
    • /
    • 2017
  • This paper deals with the performance analysis of three phase induction motor considering its stator side faults and operating thermal limits. The speed control of induction motor using three phase boost converter operated by a MOSFET switch and a PI controller is demonstrated and presented in this article. IGBTs switches are used for inverter drive mechanism. The experimental result of speed control of induction motor using voltage control technique clearly shows better accuracy than conventional methods of speed control. A three phase 1HP 415V 0.78 kW 4 Pole induction motor is designed using motor solver software. Based on the parameters used in the software thermal analysis of induction motor is done and torque variation with conductor area, efficiency, output curve, losses in different parts of motor has been obtained. Also different types of faults namely under voltage, over voltage, stator imbalanced voltage, turn to turn, locked rotor bar, wrong alignment of rotor bar with respect to stator are studied and fault analysis is performed. Hence comparison is made based upon the results obtained before and after faults.

High Performance Speed Control of Switched Reluctance Motor

  • Song, Byeang-Seab;Yoon, Yong-Ho;Choi, Jun-Hyuk;Kim, Jun-Ho;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.457-461
    • /
    • 2001
  • Advantages of switched reluctance motor(SRM) drives make it an attractive candidate for replacing adjustable speed ac and dc drives in both industrial and consumer applications. Furthermore, a simple, low cost and robust SRM drive can be efficiently operated in the hostile environment of an automobile. Generally, the speed control of SRM has a large step change or large torque reference, the output of its PI controller is often saturated. When this happens, the integral state is not consistent with the SRM input, while may give rise to the windup phenomenon. This paper proposes anti-windup control method for SRM speed control system by hysteresis current controlled asymmetry bridge converter. The experimental results show that the speed response has much improved performance, such as a small overshoot and fast settling time at the acceleration and particulary deceleration period with braking mode.

  • PDF

A study developing control algorithm for Pumped-Storage Synchronous motor drive (양수발전소 동기전동기의 기동제어 알고리즘에 관한 연구)

  • Kang S.W.;Park S.H.;Kim J.M.;Lim I.H.;Ryu H.S.;Kim J.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.467-471
    • /
    • 2003
  • The large synchronous motor for the pumped-storage plant(or SFC : Static Frequency Converter) has to be brought up to 100$\%$ rated speed and synchronized with the AC power network. Starting the motor from rest is achieved by switching current into the stator winding so that interaction between this stator current and the rotor flux will cause the correct direction of torque to be developed so that the motor turns in the required direction. Starting ranges of the synchronous motor are divided into three regions. The first region Is at standstill, the second that is called by the forced commutation is from standstill to 5-8$\%$ of rated speed, and the third, which is called by the natural commutation, is from 5-8$\%$ of rated speed to 100$\%$ rated speed. So this paper describes three regions of the control techniques of the pumped-storage synchronous motor drive.

  • PDF

A Study on the Speed Control of PMSM for Elevator Drive (엘리베이터구동용 영구자석형 동기전동기의 속도제어에 관한 연구)

  • Yu J.S.;Kim L.H.;Choi G.J.;Yoon K.C.;Jung M.T.;Kim Y.C.;Lee S.S.;Won C.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.461-466
    • /
    • 2003
  • This paper presents the speed control of the surface-mounted permanent-magnet synchronous motors (SMPMSM) for the elevator drive. The elevator motor needs to be a compact and slim type. Essentially, the proposed scheme uses a vector control algorithm for a speed and torque control. This system is implemented using a high speed 32-bit DSP (TMS320C31-50), a high-integrated logic device FPGA (EPF10K10-Tl144-3) to design compactly and Inexpensively The proposed scheme is verified through digital simulation and experiments for a three-phase 13.3kW SMPMSM as a MRL(MachineRoomless) elevator motor ill the laboratory. Finally, experiment of the test tower was performed with a 48kW PWM converter-inverter system for a high- speed elevator .

  • PDF