• Title/Summary/Keyword: Torque Control

Search Result 2,912, Processing Time 0.023 seconds

Direct Torque Control of Induction Motor by Torque Slope and Reference Voltage Control (토오크 기울기 및 기준전압제어에 의한 유도전동기의 직접토오크 제어)

  • Kim Pyoung-Ho;Choi Youn-Ok;Cho Geum-Bae;Baek Hyung-Lae;Lee Sang-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • The conventional hysterysis band DTC(Direct Torque Control) strategy have relatively high torque ripple at low speed and variable switching frequency according to motor speed even though it provides a fast torque response with very simple scheme consisted with only two hysteresis band comparators and a switching table for torque and flux control. In this paper, author proposed a new DTC scheme based on the torque slope and reference voltage control. The new scheme can maintain the minimized torque ripple and constant switching frequency. Experimental tests carried out with an 1.5kW induction motor drive system show improved dynamic characteristics and prove the feasibility of proposed strategy.

A New Direct Torque Control Method of Induction Motor for Torque Ripple Reduction

  • Kim, Deok-Ki;Kim, Jong-Su;Kim, Sung-Hwan;Kim, Hyun-Soo;Kim, Won-Ouk;Yoon, Kyoung-Kuk;Oh, Sae-Gin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1061-1067
    • /
    • 2008
  • Direct Torque Control[DTC] and Vector Control are the two schemes developed for high performance induction motor drives. DTC based induction motors are being increasingly used in various industrial applications. DTC offers fast torque response and better speed control with lesser hardware and processing costs as compared to vector controlled drives. However, conventional DTC suffers from high torque ripple, current harmonics and low performance during torque transients. In this paper a new Direct Torque Control[DTC] method of induction motor is presented. In comparison with the conventional DTC method, the PWM technique is applied to proposed control method. In this method, decoupling mechanism is not required and the torque, the flux magnitude are under control using PI controllers and generating the voltage command for inverter control. Therefore torque and speed ripple could be reduced in comparison with the conventional switching table DTC.

Precision Control of a Torque Standard Machine Using Fuzzy Controller (퍼지제어기를 이용한 토크 표준기의 정밀제어)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.46-52
    • /
    • 2001
  • This study describes the precision control of the torque standard machine using a self-tuning fuzzy controller. The torque standard machine should generate the accurate torque for calibrating a torque sensor. In order to reduce the relative expanded uncertainty of the torque standard machine, when a weight is hanged to the end of the torque arm for generating the torque, the sloped torque arm should be accurately controlled to the horizontal level. If the slope of the torque arm is larger from the inaccurate control, the uncertainty of the torque standard machine due to control will be larger. This applies the inaccurate torque to a torque sensor to calibrate, and the measuring error of the torque sensor generate from it. Therefore the torque arm of the torque standard machine is accurately controlled. In this paper, the self-tuning fuzzy controller was designed using a fuzzy theory, and the torque arm of the torque standard machine was accurately controlled. The control gain of the fuzzy controller, that is the membership function size of the error, the membership function size of the error change and the membership function size of the controller were determined from the self-tuning. The control results of the torque standard machine were the overshoot within 0.0076mm, the rise time within 16.70sec and the steady state error within 0.0076mm.

  • PDF

Torque Control of a Switched Reluctance Motor for the Precision Position Control of a Tank Gun (전차 포신의 정밀 위치 제어를 위한 스위치드 리럭턴스 모터의 토크 제어)

  • 최창환;김용대;이대옥;박기환
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.42-52
    • /
    • 2000
  • A torque control method of a switched reluctance motor for the position control of a tank gun is presented. One of the widely used torque control scheme, torque sharing function method, is investigated and a new torque sharing function method is proposed that extends the definition region of the conventional TSF to both the positive and negative torque production regions. By using this definition, all kinds of the control inputs that consider switching on/off angle control as well as the current profiling can be described. A parametrized representation of the current profiles is proposed by using a series of B-spline functions, which reduces memory requirement and enables additional controllers. Optimal determination of the TSFs are also investigated for various control objectives. Moreover, the comparison study of each objective is presented. Since this method generalizes all of the possible control input, the current and torque profiles obtained from the optimization are the most suitable control input that satisfy the objectives.

  • PDF

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

New Instantaneous Torque Estimation and Control for PM Synchronous Motor (영구자석 동기전동기의 새로운 순시토오크 추정 및 제어)

  • 정세교;김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.23-35
    • /
    • 1998
  • A new instantaneous torque control is presented for a high performance control of a permanent magnet(PM) synchronous motor. In order to deal with the torque pulsating problem of a PM synchronous motor in a low speed region, new torque estimation and cotrol techniques are proposed. The linkage flux of a PM synchronous motor is estimated using a model reference adaptive system technique and the torque is instantaneously controlled by the proposed torque controller combining an integral variable structure control with a space vector PWM. The proposed control provides the advantage of reducing the torque pulsation caused by the non-sinusoidal flux distribution. This control strategy is applied to the high torque PM synchronous motor drive system for direct drive applications and implemented by using a software of the DSP TMS320C30. The simulations and experiments are carried out for this system and the results well demonstrate the effectiveness of proposed control.

The Finite Control Set Model Predictive Torque Control Method for Surface Mounted Permanent Magnetic Synchronous Motor of Electric Vehicle (전기자동차용 표면 부착형 영구자석 동기 전동기의 토크제어를 위한 유한 제어 요소 모델 예측제어(FCS-MPC) 기법)

  • Park, Seong Hwan;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.453-462
    • /
    • 2016
  • This paper proposes a torque control method for surface mounted permanent magnetic synchronous motor (PMSM) driven by a 2-level voltage source driven inverter, which has fast torque response and small torque ripple. The proposed torque control method follows the finite control set model predictive control (FCS-MPC) strategy. A reference state is derived at each time step for the given time varying torque reference and the cost index is defined so that the tracking error for this reference state should be penalized. The choice of an optimal output voltage vector is made first from the 6 possible active voltage vectors of the 2-level voltage source inverter. Then a modulation factor for the chosen optimal voltage vector is obtained so that the torque ripple can be reduced further. It is shown that the proposed FCS-MPC control method yields fast torque tracking response and small torque ripple through simulation and experiments.

Instantaneous Torque Control of IPMSM for maximum Torque Drive in Torque and Current Plane (토크와 전류 평면에서 최대토크 운전을 위한 IPMSM의 순시 토크제어)

  • Lee, Hong-Gyun;Lee, Jung-Chul;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • The paper proposes instantaneous torque control of IPMSM for maximum torque drive of torque and current plane. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations. The scheme allows the motor to be driven with maximum torque per ampere(MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode, a condition that determines the optimal d-axis current $^id$ for maximum torque operation is derived. The proposed control algorithm is applied to IPMSM drive system for drive of wide speed range, the operating characteristics controlled that maximum torque control are examined in detail by simulation.

Torque ripple reduction of a closed-loop driven permanent magnet stepping motor by lead angle control (Lead angle 제어에 의한 폐루프 운전 영구자석형 스테핑 전동기의 토오크 리플 저감)

  • Lee, Hyun-Chang;Jun, Ho-Ik;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.280-288
    • /
    • 1997
  • In this paper, we will show that the torque ripple in closed-loop drives of permanent magnet stepping motors is reduced as properly selected lead angle control method. We propose an instantaneous torque equation, which is the function of lead angle, to estimate the influence on torque ripple. We design a closed-loop lead angle control system based on the proposed instantaneous torque equation and measure the instantaneous torque in various excitation modes. It is shown that torque ripple is greatly reduced, as seen from the experimental results as well as from the computer simulation results. For example, torque ripple reduced from 78.25% to 46.82% in the case of 50 PPS single-phase excitation mode operation.

  • PDF

A Study on the Torque Control Method of a Hydraulic Actuation System for Measuring the Dynamic Stiffness of Missile Fin Actuators (유도무기용 날개구동기의 동적 강성 측정을 위한 유압 구동장치의 토크제어 기법에 관한 연구)

  • Lee, Ho-Sung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.181-188
    • /
    • 2007
  • This paper presents a torque control method of a hydraulic actuation system for measuring the dynamic stiffness of missile fin actuators. We propose a new control technique called Dual Dynamic Torque Feedback Control(DDTFC), which improves the stability of the torque control system and enables fast tracking of torque command. The developed control scheme is derived from the physical understanding based on mathematical modelling and analysis. The dynamics of hydraulic torque control servo-system is unravelled via physics-based modelling and nonparametric system identification. In order to verify the effectiveness of the method, the experiment is carried out with a test equipment for measuring the dynamic stiffness. The experiment and simulation results show that DDTFC gives stability improvement.