• Title/Summary/Keyword: Toroid ring

Search Result 2, Processing Time 0.016 seconds

Ring and Volcano Structures Formed by a Metal Dipyrromethene Complex

  • Son, Seung Bae;Miao, Qing;Shin, Ji-Young;Dolphin, David;Hahn, Jae Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1727-1731
    • /
    • 2014
  • Dichloromethane liquid droplets containing a cobalt dipyrromethene trimer deposited on a graphite surface were found to form coffee ring, toroid ring, or volcano dot structures due to the redistribution of the solute during solvent evaporation. The shapes and size distributions of the ring structures depended on the drying temperature. The shape differences were attributed to the fact that the solvent evaporation rate controlled the self-assembly process that yielded the coffee stain and pinhole structures.

Fabrication of the Alnico Bonded Magnets for Measuring Instruments and its Magnetic Properties (계측기용 알니코 본드자석의 제조 및 자기 특성연구)

  • Kim, Jung Sik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.85-91
    • /
    • 2011
  • Alnico magnets can be used as magnetic bearings for the precise electric power measuring instruments such as watt-hour meters because they have high remanence ($B_r$), relatively high maximum energy product ($(BH)_{max}$), and excellent temperature stability. In this study, Alnico composite magnets were fabricated by appropriately mixing alnico alloy powders with epoxy resin and binder. The Alnico powders mixed with epoxy resin and a hardening agent with a mixing ratio of 96:4 were pressed and then cured to be a toroid-type ring magnet with an outer diameter (${\Phi}_{out}$) of 15 mm, an inner diameter (${\Phi}_{in}$) of 6.5 mm and a thickness (t) of 2.5 mm, respectively. The magnetic properties of the Alnico ring magnets were varied with the mixing ratio of Alnico powders that possess different average particle sizes. The Alnico ring magnet prepared by mixing 5 wt% of $50{\mu}m$ (small size) powder, 15~20 wt% of $150{\mu}m$ (medium size) powder, and 75~80 wt% of $300{\mu}m$ (large size) powder showed the best magnetic properties (remanent induction, coercive force, maximum energy product, and surface flux density). In addition, measurements of temperature and moisture characteristics for the Alnico ring magnets showed that the surface flux densities of the N and S poles decreased little and the repulsive distance between the magnets decreased as small as 0.05 mm after 10 days.