• Title/Summary/Keyword: Topsoil

Search Result 202, Processing Time 0.028 seconds

Density and Species Composition of Soil Seed Bank in Rural Stream Topsoil (농촌하천 표토내 매토종자의 발아량 및 종구성)

  • Kim, Se-Chang;Park, Bong-Ju;Kim, Won-Tae;Yoon, Yong-Han;Cho, Yong-Hyeon;Kang, Hee-Kyoung;Oh, Hyun-Kyung;Shin, Kyung-Jun;Eo, Yang-Joon;Yoon, Taek-Seong;Jang, Kwang-Eun;Kwak, Moo-Young
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1419-1424
    • /
    • 2012
  • Purpose of this study was to evaluate germination characteristics of soil seed bank in rural stream topsoil using seedling emergence method in order to provide data for future ecological restoration of stream utilizing topsoil. There were 24 families, 52 genera, 61 taxa of soil seed bank flora found in topsoil from 6 rural streams. The most frequently found taxa were Compositae (12 taxa) followed by Gramineae (8 taxa), Caryophyllaceae (5 taxa), Cruciferae (4 taxa), Scrophulariaceae, Labiatae, Polygonaceae and Cyperaceae. Plant with the most number of germination was Stellaria aquatica followed by Erigeron annuus, Imperata cylindrica var. koenigii, Poa annua, Cyperus microiria and Veronica undulata. Naturalized plants found were Erigeron annuus, Rumex crispus, Oenothera odorata, Cerastium glomeratum, Bidens frondosa, Erigeron philadelphicus, etc.

Development of Composite Soil Quality Index Evaluation System based on Web GIS (Web GIS기반의 복합적 토양 질 평가 시스템 개발)

  • Sung, Yunsoo;Yang, Jae E;Kim, Sung Chul;Ryu, Jichul;Jang, Wonseok;Kum, Donghyuk;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.693-699
    • /
    • 2015
  • It has been known that torrential rainfall events have been occurring worldwide due to climate change. The accelerated soil erosion has caused negative impacts on water quality and ecosystem of receiving waterbodies. Since soil security issues have been arising in various areas of the world, intensive interests have been given to topsoil management in Korea. Thus in this study, Web GIS-based computing system of physical, chemical, and biological topsoil quality indices were developed. In this study, five soil quality maps at national scale and top soil erosion potential were prepared for evaluation of soil quality based on soil erosion potential. For this system, the open source Web GIS engine, OpenGeo, was used as core engine of the system. With this system, decision makers or related personnel in areas of soil erosion Best Management Practices (BMPs) would be able to find the most appropriate soil erosion BMPs based on soil erosion potential and soil quality at the area of interest. The Web GIS system would be efficiently used in decision making processes because of ease-of-use interface and scientific data used in this system. This Web GIS system would be efficiently used because this system could provide scientific knowledge to decision makers or stakeholders. Currently various BMP database are being built to be used as a decision support system in topsoil management and topsoil quality areas.

Derivation of regional annual mean rainfall erosivity for predicting topsoil erosion in Korea (표토침식량 산정을 위한 지역별 연평균 강우침식인자 유도)

  • Lee, Joon-Hak
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.783-793
    • /
    • 2018
  • The purpose of this study to present updated regional annual mean rainfall erosivity data in the Republic of Korea. In 2012, Ministry of Environment in Korea published the notice about investigation and survey procedure for the amount of topsoil erosion and adopted USLE (Universal Soil Loss Equation) model to predict the amount of national-scale soil erosion in Korea. In the notice, regional rainfall erosivity values for 158 sites, which is essential to apply the USLE, were included, however, these values came from the data made before 1997 and need to be updated. This study collected, classified and combined annual mean rainfall erosivity data from the literature review to analyze the data. We presented that new iso-erodent map, interpolated by IDW (Inverse Distance Weighted) method and extracted updated regional annual mean rainfall erosivity data at 167 regions for 1961~2015. These values will be used as updated rainfall erosivity data to predict the amount of topsoil erosion in Korea.

Impact of Topsoil Stockpiling Methods on the Viability of Seed Banks

  • Yi, Myung-Hoon
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.907-923
    • /
    • 2018
  • The aim of this study was to determine the appropriate stockpiling methods for revegetation by comparing the germination status of seed banks before and after preservation for 2 years. Soil temperature in stockpiled topsoil was higher in open treatment and at 1.5 m, whereas soil water content was maintained at lower levels (14.06-19.08%), than those in the control group. The seed banks in stockpiled topsoil had 48 species and 1,559 individuals, among which perennials showed the highest number in terms of life forms, whereas Compositae and Gramineae were dominant in terms of families. Based on seed bank type, persistent seed banks had the highest number of species, while transient seed banks had the highest number of individuals. By stockpiling period, the number of species in the seed bank started to increase after 24 months, while the number of individuals began increasing after 12 months and exceeded that of the control group after 24 months. Regarding the treatment of stockpiling methods, the number of species and individuals in open treatment were closer to those of the control group. When analyzed by height, the number of species and individuals were higher at 0 m, but still lower than those of the control group. A multivariate analysis of variance (MANOVA ) showed that the optimal combination was obtained in open treatment and the number of individuals increased with the lengthening of the stockpiling period.

Study of Boil Characteristics on Productivity of Flue- cured Tobacco (Nicotiana tabacum L.) III. Influence of Morphological Characteristics of Soils on Productivity of Flue-cured Tobacco (황색종 담배의 생산성에 관여하는 토양특성 제3보. 토양의 형태적 특성이 황색종 담배의 생산성에 미치는 영향)

  • 김용연
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.9 no.2
    • /
    • pp.49-57
    • /
    • 1987
  • This study had been conducted to determine morphological characteristics of soil in the major districts cultivating flue-cured tobacco plant. Also native soil productivities were measured by means of bioassay planting tobacco plant without fertilizer at 87 selected soils through field experiment. Morphological characteristics of troll affecting the dry weight of tobacco leaves cultivated in the field were investigated Among soil morphological characteristics, topograpy, slope, topsoil depth, soil depth, and soil texture had influenced with high significant on the dry weight of tobacco leaves. For prediction of dry weight (productivity) of tobacco leaves without fertilizer , multiple regression analysis were introduced using soul morphological characteristics. A combination of topography, slope, topsoil depth, and soil texture was very reliable for prediction of productivity. The regression equation was y = -16.88 -14, 34$X_1$ +20.43$X_2$ +50.21$X_3$ -7.54$X_4$ +13.45$X_5$ R = $0.670^{**}$ Where $X_1$ : Topography $X_2$ : Slope $X_3$ : Topsoil Depth $X_4$ : Soil Depth $X_5$ : Soil Texture

  • PDF

The Soil Improvement and Plant Growth on the Newly-Reclaimed Sloped land VI. Relationship between annual change of soil phsico-chemical properties and yield of silage corn (신개간경사지 토양개량과 작물생육에 관한 연구 VI. 토양의 물리화학성 년차간 변화가 옥수수 청예수량에 미치는 영향)

  • 허봉구;김무성
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • This study was experimented to obtain the basic information on the changeable aspect and improvement of soil fertility in newly-reclaimed sloped land. Silage corn was cultivated under the six different treatments for 4 years. The relation between the amount or ratio of annual changes of soil physico-chemical properties and yield of silage corn were analyzed. Soil bulk density was decreased in 3rd year at topsoil, but that decreased in 4th year at subsoil. Soil organic matter also decreased in 2nd year at topsoil, and decreased continuously at subsoil. Bulk density and hardness of soil depths showed significant negative simple correlation with dry matter yield and cation exchange capacity showed positive. Correlation coefficient of chemical properties with dry matter yield were low. The range of annual changes of moisture percent, hardness and organic matter were wider than the other properties. The significantly different of physical properties were higher than the chemical properties, and those of topsoil were higher than subsoil. According to multiple regression between yield and physico-chemical properties of subsoil, bulk density and cation exchange capacity were in the greatest contribution at the variations, but bulk density was greatest at the ratios.

  • PDF

Antimicrobial active clones from soil metagenomic library

  • H. K. Lim;Lee, E. H;Kim, J.C.;Park, G. J.;K S. Jang;Park, Y. H.;K Y. Cho;S, W. Lee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.1-108
    • /
    • 2003
  • Soil metagenome is untapped total microbial genome including that of the majority of unculturable bacteria present in soil. We constructed soil metagenomic library in Escherichia coli using DNA directly extracted from two different soils, pine tree rhizosphere soil and forest topsoil. Metagenomic libraries constructed from pine tree rhizosphere soil and forest topsoil consisted of approximately 33,700 clones and 112,000 clones with average insert DNA size of 35-kb, respectively. Subsequently, we screened the libraries to select clones with antimicrobial activities against Saccharomyces cerevisiae and Agrobacterium tumefaciens using double agar layer method. So far, we have a clone active against S. cerevisiae and a clone active against A. tumefaciens from the forest topsoil library. In vitro mutagenesis and DNA sequence analysis of the antifungal clone revealed the genes involved in the biosynthesis of antimicrobial secondary metabolite. Metagenomic libraries constructed in this study would be subject to search for diverse genetic resources related with useful microbial products.

  • PDF

Physicochemical Properties of Topsoil Used for River Improvement and Non-Improvement Areas

  • Kim, Won-Tae;Cho, Yong-Hyeon;Yoon, Yong-Han;Kang, Hee-Kyoung;Park, Bong-Ju;Shin, Kyung-Jun;Eo, Yang-Joon;Yoon, Taek-Seong;Jang, Kwang-Eun;Kwak, Moo-Young;Song, Hong-Seon
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1295-1304
    • /
    • 2013
  • This study was carried out to evaluate the physicochemical properties and perform a feasibility analysis of planting material composed of topsoil from river improvement and non-improvement areas. The results showed that the physicochemical properties of topsoil from river improvement areas were on the average sandy loam~loamy sand in soil texture, 5.6~6.8 in pH, 0.01~0.06 dS/m in EC, 0.9~2.1% in OM, 0.02~0.12% in T-N, 8~14 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 2.55~11.11 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.34~2.06 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~396 mg/kg in Av. $P_2O_5$. And non-improvement areas showed on average sandy clay loam~sand in soil texture, 5.7~6.7 in pH, 0.02~0.08 dS/m in EC, 0.9~4.4% in OM, 0.02~0.23% in T-N, 7~18 $cmol^+/kg$ in CEC, 0.01~0.08 $cmol^+/kg$ in Ex. $K^+$, 3.81~12.67 $cmol^+/kg$ in Ex. $Ca^{2+}$, 0.60~1.95 $cmol^+/kg$ in Ex. $Mg^{2+}$, and 3~171 mg/kg in Av. $P_2O_5$. Meanwhile, the results of an applied valuation of topsoil- based planting were as follows. Ex. $K^+$ levels were low grade in all survey areas. OM was low grade in 12 improvement areas and 11 non-improvement areas. Av. $P_2O_5$ levels were low grade in 10 improvement areas and 10 non-improvement areas. T-N was low grade in six improvement areas and four non-improvement areas. Ex. $Mg^{2+}$ levels were low grade in two improvement areas.

Relationship between the Aboveground Vegetation Structure and Fine Roots of the Topsoil in the Burnt Forest Areas, Korea (산화적지에서 지상부 식생구조와 표토에 분포하는 세근의 관계)

  • Lee, Kyu-Song;Park, Sang-Deog
    • The Korean Journal of Ecology
    • /
    • v.28 no.3
    • /
    • pp.149-156
    • /
    • 2005
  • This study was conducted to elucidate the relationship between the aboveground vegetation structure and fine roots of the topsoil (<15m), and thereafter to obtain the regression models for the estimation of the fine roots of the topsoil using the aboveground vegetation values in the burned forest areas, Korea. The FRT (fine roots of the top soil) as well as the aboveground vegetation structure showed spatial variation in the earlier successional stages after forest fire. The fine roots (<2 mm) of the topsoil in the earlier successional stages than the first 3 year after forest fire showed the range from 3 to 166 g $DM/m^2$. The FRT in the naturally regenerated sites and planted sites after forest fire was closely correlated with the vegetation indices, especially lvc, representing the development status of the aboveground vegetation. The FRT in the terrace seeding work sites after forest fire was closely correlated with year elapsed after terrace seeding work. The FRT in the terrace seeding work sites showed the much higher values because of the vigorous growth of grass species than the other sites. In the naturally regenerated sites, the FRT showed the parabola form according to the increment of aboveground vegetation value (Ivc). Although the aboveground vegetation value (Ivc) showed a tendency to increase logarithmically during the secondary succession after forest fire, the estimated fine roots of the topsoil was depicted the parabola form showing the gradual increment until the first 15 years and slight decrease thereafter. Decrease of FRT in the later successional stage showing the high vegetation value may be caused by increment of the woody species contribution to the vegetation value (Ivc). Our results represented that the aboveground vegetation value (Ivc) can be used to the estimation of the fine roots of the topsoil in burned forest areas.

The Topsoil Characteristics, and Estimation of Topsoil Organic Carbon Storage at Restoration Areas in Riparian Zones of the Han River (한강 수변구역 복원지의 표토 특성 및 유기탄소 저장량 추정)

  • Lee, Jong-Mun;Cho, Yong-Hyeon;Kim, Yoon-Ho;Park, Sung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.4
    • /
    • pp.12-23
    • /
    • 2019
  • This study was carried out to investigate and analyze the environmental characteristics of restoration areas in the riparian zones of the Han River, and to quantify the amount of topsoil organic carbon storage. As a result of investigation and analysis of 21 survey sites, the total number of species planted was found to be 17, and the mean number of species was $2.86{\pm}0.13$ species per site. At least one species and a maximum of 7 species were planted at each site. The mean diameter at breast height was $9.1{\pm}0.6cm$, the mean height was $6.2{\pm}0.3m$ and the root content in soil was $0.13{\pm}0.18g/cm^2$. As a result of the analysis of the soil characteristics, 6 out of 21 items, such as the bulk density, solid ratio, gravel ratio, soil hardness, sand content, and pH increased as the soil layer deepened. The topsoil organic carbon storage by layer was $11.54{\pm}1.08ton/ha$ at 0-10cm, $8.69{\pm}0.81ton/ha$ at 10-20cm, $7.97{\pm}0.79ton/ha$ at 20-30cm, and the total from 0 to 30cm was $28.21{\pm}7.31ton/ha$. The highest amount of topsoil organic carbon storage by land use in the past was $35.17{\pm}5.31ton/ha$ in agricultural lands, followed by $28.16{\pm}8.31ton/ha$ in residential areas, $21.87{\pm}9.05ton/ha$ in commercial areas, $19.23{\pm}12.48ton/ha$ in industrial areas, and $17.07{\pm}11.33ton/ha$ in the barren areas. The highest amount of topsoil organic carbon storage in the restored areas was $38.46{\pm}3.14ton/ha$ in 2006, followed by $28.57{\pm}7.84ton/ha$ in 2016, and $16.78{\pm}6.06ton/ha$ in 2011. The results of this study are expected to provide a basic database and evaluation criteria for enhancing the carbon abatement effects of the restoration sites in riparian zones in the future.