• Title/Summary/Keyword: Topsoil

Search Result 203, Processing Time 0.027 seconds

Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field (경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과)

  • Bak, Gyeryeong;Lee, Jeong-Tae
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Factors influencing the spatial distribution of soil organic carbon storage in South Korea

  • May Thi Tuyet Do;Min Ho Yeon;Young Hun Kim;Gi Ha Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.167-167
    • /
    • 2023
  • Soil organic carbon (SOC) is a critical component of soil health and is crucial in mitigating climate change by sequestering carbon from the atmosphere. Accurate estimation of SOC storage is essential for understanding SOC dynamics and developing effective soil management strategies. This study aimed to investigate the factors influencing the spatial distribution of SOC storage in South Korea, using bulk density (BD) prediction to estimate SOC stock. The study utilized data from 393 soil series collected from various land uses across South Korea established by Korea Rural Development Administration from 1968-1999. The samples were analyzed for soil properties such as soil texture, pH, and BD, and SOC stock was estimated using a predictive model based on BD. The average SOC stock in South Korea at 30 cm topsoil was 49.1 Mg/ha. The study results revealed that soil texture and land use were the most significant factors influencing the spatial distribution of SOC storage in South Korea. Forested areas had significantly higher SOC storage than other land use types. Climate variables such as temperature and precipitation had a relative influence on SOC storage. The findings of this study provide valuable insights into the factors influencing the spatial distribution of SOC storage in South Korea.

  • PDF

Analysis of cause of street tree death through urban topsoil and soil moisture monitoring (도시 표토 토양수분 모니터링을 통한 가로수 고사 원인 분석)

  • Jeong, Kieun;Hong, Eunmi;Yang, Jae E;Kim, Hyuck-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.180-180
    • /
    • 2021
  • 가로수는 「도로법」 제11조에 따른 도로(고속국도를 제외한다)와 보행자전용도로 및 자전거전용도로 등 대통령령으로 정하는 도로의 도로구역 안 또는 그 주변지역에 심는 수목을 말하며, 도시의 가로수는 기후조절효과 및 대기오염 정화효과 등을 가질 뿐 아니라 도심지 내에 녹색을 도입하고 도시경관을 구성하는 주요 요소이다. 전국 각 시도에서는 가로수 조성사업을 지속적으로 추진하고 있다. 하지만 몇몇 도시에서는 적절하지 않은 가로수 관리로 인해 가로수가 말라죽는 현상이 증가하고 있다. 이에 가로수 고사 현상을 감소시키기 위하여 토양수분과 토양온도를 측정하여 가로수 피해와 연관성을 조사할 필요성이 있다고 판단하였다. 본 연구는 춘천시에서 진행하였으며, 일반 가로수와 현재 가로수 고사로 문제가 되고 있는 3 모니터링 지점을 선정하고, 토양수분 센서를 5, 15, 40 cm 깊이에 설치하였다. 센서를 이용하여 토양수분과 지온, EC 모니터링을 실시하였다. 토양수분 모니터링 자료를 활용하여 토층별 토양수분 소비량 산정을 하고, 현장 토양시료를 채취하여 물리·화학적 특성을 분석하였다. 또한 가로수 증발산량 산정 및 토층별 토양수분 소비량과 소비패턴을 비교하였다. 본 연구 결과를 향후 RZWQM(Root Zone Water Quality Model) 모델의 기초자료 및 시나리오 구성에 활용될 수 있으며, 모니터링 및 모델링 결과를 활용하여 가로수 및 도시 표토 기능 위협 요인을 분석에 활용 될 수 있다.

  • PDF

Improving streamflow prediction with assimilating the SMAP soil moisture data in WRF-Hydro

  • Kim, Yeri;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.205-205
    • /
    • 2021
  • Surface soil moisture, which governs the partitioning of precipitation into infiltration and runoff, plays an important role in the hydrological cycle. The assimilation of satellite soil moisture retrievals into a land surface model or hydrological model has been shown to improve the predictive skill of hydrological variables. This study aims to improve streamflow prediction with Weather Research and Forecasting model-Hydrological modeling system (WRF-Hydro) by assimilating Soil Moisture Active and Passive (SMAP) data at 3 km and analyze its impacts on hydrological components. We applied Cumulative Distribution Function (CDF) technique to remove the bias of SMAP data and assimilate SMAP data (April to July 2015-2019) into WRF-Hydro by using an Ensemble Kalman Filter (EnKF) with a total 12 ensembles. Daily inflow and soil moisture estimates of major dams (Soyanggang, Chungju, Sumjin dam) of South Korea were evaluated. We investigated how hydrologic variables such as runoff, evaporation and soil moisture were better simulated with the data assimilation than without the data assimilation. The result shows that the correlation coefficient of topsoil moisture can be improved, however a change of dam inflow was not outstanding. It may attribute to the fact that soil moisture memory and the respective memory of runoff play on different time scales. These findings demonstrate that the assimilation of satellite soil moisture retrievals can improve the predictive skill of hydrological variables for a better understanding of the water cycle.

  • PDF

A Research on None Covering of Top-soil for Rice Seedling Nursery for Sparse Machine Transplanted Rice (벼 소식재배를 위한 무복토 육묘 연구)

  • Park, K.H.;Ryu, H.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.2
    • /
    • pp.77-86
    • /
    • 2019
  • To determine none top soil covering in rice seedling nursery method for the sparse machine transplanting, four different sowing methods were tested. Shoot and root length, fresh weight, leaf number and color using leaf color chart(LCC) and SPAD were collected as the data comparison of methods. The seedling height showed the highest growth according to the conventional (230g seed rate of pre-emerged seeds and top-soil covering) > high sowing density 1 (290g seed rate of pre-emerged seeds and top-soil covering) ≥ high sowing density 2(290g seed rate of pre-emerged seeds and none top-soil covering) > high sowing density 3(290g seed rate of iron-coated seeds and none top-soil covering). There was any statistical difference between groups in root length, leaf number, LCC, and SPAD values. Thus, a high sowing density of 290g for rice nursery seedling box was recommended to the sparse machine transplanting in rice cultivation with the none top-soil covering method, enabling convenient handling in transportation and machine transplanting work.

Characteristics of Microbial Community Enzyme Activity and Substrate Availability of Damaged Soil (훼손 토양의 미생물군집 효소 활성과 기질 이용성 특성)

  • Ji Seul Kim;Gyo-Cheol Jeong;Myoung Hyeon Cho;Eun Young Lee
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.68-77
    • /
    • 2023
  • The effect of soil damage on the physicochemical characteristics and activity of the soil microbial community is not well known. This study investigates this relationship by analyzing 11 soil samples collected from various points of soil damage across Gyeonggi-do. Soil damage resulted from forest fires, landslides, and development areas, with their impacts most severe on the topsoil layer (0-30 cm). Dehydrogenase and β-glucosidase activities were notably higher at locations damaged by forest fires compared to other sites. While enzyme activities in soils influenced by landslides and development areas were relatively low, sites with a pollution history exhibited elevated dehydrogenase activity, likely due to past microbial response to the pollution. Additionally, an assessment of carbon substrate usability by soil microorganisms indicated higher substrate availability in areas impacted by forest fires, contrasting with lower availability in landslide and development sites. Statistical analysis revealed a positive correlation between organic content of sand and clay and microbial activity. These findings provide valuable insights into soil damage and associated restoration research, as well as management strategies.

The Analysis of GIS DB for the Evaluation of Turbid Water Considering Spatial Characteristics of River Channel (하천의 공간적 특성을 고려한 탁수평가 GIS DB 분석)

  • Park Jin-Hyeog;Lee Geun-Sang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Andong and Imha reservoir adjoins each other, but turbid water shows too much different when it rains. The characteristics of geological rock in basin and agricultural area around river boundary are pointed out as the major reason of turbid water of Imha reservoir. This study analyzed rock type of topsoil layer using soil map by National Institute of Agricultural Science and Technology (NIAST). Among rock types, sedimentary rock affects on the occurrence of turbid water. In the analysis of sedimentary rock type, the distribution of sedimentary rock of Imha basin shows 1.87 times higher than that of Andong basin. Also, the distribution of sedimentary rock of Imha basin shows higher than that of Andong basin within 1,600m from river channel in according to the buffer zone of river boundary. And Agricultural area of Imha basin shows higher than that of Andong basin in analysis of land cover within 1,600 m from river channel. As this agricultural characteristics of Imha basin, cover management factor of Imha basin represents more higher that that of Andong basin.

Evaluation of Soil Loss According to Surface Covering and Tillage Methods in Corn Cultivation

  • Lee, Jeong-Tae;Lee, Gye-Jun;Ryu, Jong-Soo;Kim, Jeom-Soon;Han, Kyung-Hwa;Park, Seok-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.510-518
    • /
    • 2013
  • Corn was mainly cultivated in slope land during summer season when heavy rain falls so that soil loss occurs severely. Especially, soil disturbance and exposure of topsoil by conventional tillage intensifies soil loss by heavy rain. The aim of this study was to develop surface covering and tillage methods for reducing soil loss in corn cultivation. The experiment was conducted in 17% sloped lysimeter with 8 treatments including strip tillage after surface covering with rye residue, strip tillage after residue covering of several crops and sod culture, black polyethylene film covering after conventional tillage and control. Amount of runoff water and eroded soil, and corn growth were investigated. Amounts of runoff water in all plots except black polyethylene plot ranged from 152 to 375 $m^3\;ha^{-1}$, accounting for 13~32% of 1,158 $m^3\;ha^{-1}$ in control. Amount of eroded soil decreased by 94 to 99% (3 to 89 kg $ha^{-1}$) in plots of strip tillage after covering with crop residues compared to control with 1,739 kg $ha^{-1}$. Corn yields in plots of strip tillage after covering with crop residues ranged from 6.0 to 6.9 Mg $ha^{-1}$, while that of control was 6.5 Mg $ha^{-1}$. The results suggest that strip tillage methods after surface covering with crop residues are very effective on soil conservation of slope land in corn cultivation.

Ecological Study of Pachynematus itoi Okutani (Hymenoptera: Tenthredinidae) (낙엽송잎벌 (Pachynematus itoi Okutani) (Hymenoptera: Tenthredinidae)의 생태학적 연구)

  • Park, Ji-Doo;Park, Il-Kwon
    • Korean journal of applied entomology
    • /
    • v.49 no.1
    • /
    • pp.17-22
    • /
    • 2010
  • Pachynematus itoi Okutani emerges three times a year, and overwinters as a pre-pupa in cocoon. First emergence of P. itoi was from 7th May to third June. Second and third emergence was from 20th June to 13th July and fourth to 25th August, respectively. Mean oviposited egg number was 59, and egg period was about 9 days. Hatching rate was >90%. Oviposited egg number was the highest in the first needle cluster of short shoot followed by second and third. P. itoi did not oviposit on single needle (long shoot) of Larix leptolepis (Sieb. et Zucc.). Larva had five instars, and larval period was about 20 days. Larva prefer needle cluster of short shoot to single needle of long shoot. Mature larva descended from host tree and pre-pupa in cocoon overwinter at topsoil.

Remediation of Electroplating Contaminated Soil by a Field Scale Electrokinetic System with Stainless Steel Electrodes

  • Yuan, Ching;Tsai, Chia-Ren;Hung, Chung-Hsuang
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.26-34
    • /
    • 2014
  • A $1.5m(L){\times}1.0m(W){\times}1.1m(H)$ polypropylene (PP) field scale electroniketic system coupled with stainless steel electrodes was designed to examined metal removal performance applied 0.2-0.35 V/cm potential gradient and 0.05-0.5M lactic acid for 20 day. Electroosmosis permeabilities of $2.2{\times}10^{-5}cm^2/V-s$ to $4.8{\times}10^{-5}cm^2/V-s$ were observed and it increased with the potential gradient increased. The reservoir pH controlled at $7.0{\pm}1.0$ has been effectively diminished the clogging of most metal oxides. The best removal efficiency of Zn, Pb, and Ni was 78.4%, 84.3%, and 40.1%, respectively, in the field scale EK system applied 0.35 V/cm and 0.05M lactic acid for 20 days. Increasing potential gradient would more effectively enhance metal removal than increasing concentration of processing fluid. The reservoir and soil temperatures were majorly related to potential gradient and power consumptio. A $4-16^{\circ}C$ above room temperature was observed in the investigated system. It was found that the temperature increase in soil transported the pore water and metals from bottom to the topsoil. This vertical transport phenomenon is critical for the electrokinetic process to remediate in-situ deep pollution.