• Title/Summary/Keyword: Topology configuration

Search Result 181, Processing Time 0.028 seconds

Load and Capacitor Stacking Topologies for DC-DC Step Down Conversion

  • Mace, Jules;Noh, Gwangyol;Jeon, Yongjin;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1449-1457
    • /
    • 2019
  • This paper presents two voltage domain stacking topologies for powering integrated digital loads such as multiprocessors or 3D integrated circuits. Pairs of loads and capacitors are connected in series to form a stack of voltage domains. The voltage is balanced by switching the position of the capacitors in one case and the position of the loads in the other case. This method makes the voltage regulation robust to large differential load power consumption. The first configuration can be named the load stacking topology. The second configuration can be named the capacitor stacking topology. This paper aims at proposing and comparing these two topologies. Models of both topologies and a switching scheme are presented. The behavior, control scheme, losses and overall performance are analyzed and compared theoretically in simulation and experiments. Experimental results show that the capacitor stacking topology has better performance with a 30% voltage ripple reduction.

Battery Balancing Method using 2-Switch Flyback Converter (2-스위치 플라이백 컨버터를 이용한 배터리 밸런싱 기법)

  • Kim, Woo-Joon;Kim, Ui-Jin;Park, Seong-Mi;Park, Sung-Jun;Son, Gyung-Jong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.451-459
    • /
    • 2022
  • Recently, in accordance with the demand for a large capacity of a secondary battery according to an increase in the demand for energy storage devices, a modular series battery configuration is essential. Accordingly, various cell balancing techniques have been proposed to prevent high efficiency and performance degradation of the battery. In this paper, propose a battery voltage balancing topology consisting of a flyback DC/DC converter type of a SIMO (Single-Input-Multiple Output) two-switch configuration for a series battery configuration. The proposed topology shows a structure in which a DC/DC converter connected to each module and a battery cell share one transformer. The topology cell balancing operation is a principle in which the voltage balancing converter of the battery converges to the same value through a transformer that shares a magnetic flux with the cells constituting the module through a single high-frequency transformer. In this paper, the dynamic characteristics analysis of the proposed circuit using PSIM was based and it was verified through experiments on one module.

Efficient Mixed Topology Configuration Algorithm for Optical Carrier Ethernet

  • Li, Bing-Bing;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9B
    • /
    • pp.1039-1048
    • /
    • 2011
  • Carrier Ethernet, which extend The algorithm based on constructing the mixed topology and performing link stretching, MT/s, has been proposed for designing cost-efficient Carrier Ethernet in optical network with multi-line-rate. However, the MT/s algorithm has high blocking ratio because the wavelength capacity is fully allocated without considering the load balance of network. In this paper, we propose an efficient mixed topology configuration (EMTC) algorithm by modifying MT/s algorithm. In order to reduce blocking ratio, we adapt a threshold for each link to restrict the link utilization so that traffic load can be distributed over whole network. We also apply the EMTC algorithm into optical hybrid switched network to evaluate the availability of our algorithm for different applications. The performance of the EMTC algorithm is compared with that of MT/s algorithm through OPNET simulation. The simulation results show that our algorithm achieve lower blocking ratio than the MT/s algorithm. Moreover, in hybrid switched network, our algorithm performs better than MT/s algorithm in terms of packet loss ratio and end-to-end delay.

Low-Overhead Feedback Topology Design for the K-User MIMO Interference Alignment

  • Jin, Jin;Gao, Xiang-Chuan;Li, Xingwang;Cavalcante, Charles Casimiro;Li, Lihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5304-5322
    • /
    • 2018
  • Since designing a feedback topology is a practical way to implement interference alignment at reduced cost of channel state information (CSI) feedback, six feedback topologies have been presented in prior works for a K-user multiple-input multiple-output interference channel. To fully reveal the potential benefits of the feedback topology in terms of the saving of CSI overhead, we propose a new feedback topology in this paper. By efficiently performing dimensionality-decreasing at the transmitter side and aligning interference signals at a subset of receivers, we show that the proposed feedback topology obtains substantial reduction of feedback cost over the existing six feedback designs under the same antenna configuration.

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Muffler Design Using a Topology Optimization Method (위상 최적화 기법을 이용한 머플러 설계)

  • Lee, Jin-Woo;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1085-1089
    • /
    • 2007
  • An acoustic topology optimization method is developed to optimize the acoustic attenuation capability of a muffler. The transmission loss of the muffler is calculated by using the three-point method based on finite element analysis. Each element of the finite element model is assumed to have the variable acoustic properties, which are penalized by a carefully-selected interpolation function to yield clear expansion chamber shapes at the end of topology optimization. The objective of the acoustic topology optimization problem formulated in this work is to maximize the transmission loss at a target frequency. The transmission loss value at a deep frequency of a nominal muffler configuration can be dramatically increased by the proposed optimization method. Optimal muffler configurations are also obtained for other frequencies.

  • PDF

SOUND REDUCTION OF ROTARY COMPRESSOR USING TOPOLOGY OPTIMIZATION (위상 최적 설계를 이용한 로터리 콤프레셔의 소음 저감)

  • 왕세명;박종찬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1168-1173
    • /
    • 2001
  • Compressors are the main source of noise of refrigerators and air-conditioning unit. Recent studies on the sound propagation of rotary compressors showed that the accumulator is a significant source of noise generation. This paper describes a design change of a rotary compressor for noise reduction using topology optimization. Topology optimization has been developed and used to find the most effective structural configuration in the early stage of design procedures. FE model of the rotary compressor composed of all the components is built for the topology optimization. Topology optimization results show that the empirical design for the present structure fail to constrain some resonance modes and a new component is required.

  • PDF

An Energy Efficient Topology Control Algorithm using Additional Transmission Range Considering the Node Status in a Mobile Wireless Sensor Network (이동성 있는 무선 센서 네트워크에서 노드의 상태를 고려한 에너지 효율적인 토폴로지 제어 방법)

  • Youn, Myungjune;Jeon, Hahn Earl;Kim, Seog-Gyu;Lee, Jaiyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.767-777
    • /
    • 2012
  • Topology control increases channel efficiency by controlling transmission power of a node, and as a result, network lifetime and throughput are increased. However, reducing transmission range causes a network connectivity problem, especially in mobile networks. When a network loses connectivity, the network topology should be re-configured. However, topology re-configuration consumes lots of energy because every node need to collect neighbor information. As a result, network lifetime may decrease, even though topology control is being used to prolong the network lifetime. Therefore, network connectivity time needs to be increased to expend network lifetime in mobile networks. In this paper, we propose an Adaptive-Redundant Transmission Range (A-RTR) algorithm to address this need. A-RTR uses a redundant transmission range considering a node status and flexibly changes a node's transmission range after a topology control is performed.

Methods of constructing optimal topology to improve performance of STP (STP의 성능 향상을 위한 최적의 토폴로지 구성방법)

  • Park, Sung-Han;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.123-126
    • /
    • 2005
  • STP gets to have different network performance, depending on the configuration method of topology. Accordingly, for efficient network environment, it is necessary to make the optimum topology. This paper proposed a way to make the optimum topology for construction of efficient network among switches on ethernet: the optimum topology was made by calculating the time the switches in the same domain receive the frame transmitted from the root switch, using a mathematical model. And it analyzed the performance of the topology depending on the location of the root switch. As a result of analyzing the performance, this study came to the conclusion that it would be effective to locate the root switch in the center of the square network.

  • PDF

Step-up Switched Capacitor Multilevel Inverter with a Cascaded Structure in Asymmetric DC Source Configuration

  • Roy, Tapas;Bhattacharjee, Bidrohi;Sadhu, Pradip Kumar;Dasgupta, Abhijit;Mohapatra, Srikanta
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1051-1066
    • /
    • 2018
  • This study presents a novel step-up switched capacitor multilevel inverter (SCMLI) structure. The proposed structure comprises 2 unequal DC voltage sources, 4 capacitors, and 14 unidirectional power switches. It can synthesize 21 output voltage levels. The important features of the proposed topology are its self-voltage boosting and inherent capacitor voltage balancing capabilities. Furthermore, a cascaded structure of the proposed SCMLI with an asymmetric DC voltage source configuration is presented. The proposed topology and its cascaded structure are compared with conventional and other recently developed topologies in terms of different aspects, such as the required components to produce a specific number of output voltage levels, the total standing voltage (TSV) and peak inverse voltage of the structure, and the maximum number of switches in the conducting path. Furthermore, a cost function is developed to verify the cost-effectiveness of the proposed topology with respect to other topologies. The TSV of the proposed topology is significantly lower than those of other topologies. Moreover, the developed topology is cost-effective compared with other topologies. A detailed operating principle, power loss analysis, and selection procedure for switched capacitors are presented for the proposed SCMLI structure. Extensive simulation and experimental studies of a 21-level inverter structure prove the effectiveness and merits of the proposed SCMLI.