• Title/Summary/Keyword: Topology configuration

Search Result 181, Processing Time 0.02 seconds

Design and Performance Evaluation of Hierarchical Protocol for Underwater Acoustic Sensor Networks (수중음파 센서네트워크를 위한 계층별 프로토콜의 설계 및 성능 평가)

  • Kim, Ji-Eon;Yun, Nam-Yeol;Kim, Yung-Pyo;Shin, Soo-Young;Park, Soo-Hyun;Jeon, Jun-Ho;Park, Sung-Joon;Kim, Sang-Kyung;Kim, Chang-Hwa
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.157-166
    • /
    • 2011
  • As underwater environment monitoring system's interest has increased, the research is proceeding about underwater acoustic sensor network. Underwater sensor network can be applicable to many fields, such as underwater environment monitoring, underwater resource exploration, oceanic data collection, military purposes, etc. It is essential to define the PHY-MAC protocol for revitalization of the underwater acoustic sensor network which is available utilization in a variety of fields. However, underwater acoustic sensor network has to implement by consideration of underwater environmental characteristics, such as limited bandwidth, multi-path, fading, long propagation delay caused by low acoustic speed. In this paper, we define frequency of adjusted PHY protocol, network topology, MAC protocol, PHY-MAC interface, data frame format by consideration of underwater environmental characteristics. We also present system configuration of our implementation and evaluate performance based on our implementation with test in real underwater field.

HEMT Mixer for Phase Conjugator Applications in the LS Band (공액 위상변위기용 LS 밴드 HEMT 혼합기)

  • 전중창
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.2
    • /
    • pp.239-244
    • /
    • 2004
  • In this paper, we have developed a frequency mixer which can be used as a microwave phase conjugator in the LS band retrodirective antenna system. The mixer as a phase conjugator must have an If signal of which frequency is nearly as high as that of an RF signal, so this fact brings difficulty in the combination of input signals and the design of impedance matching circuit. The circuit configuration is chosen to be of the gate mixer using a pseudomorphic HEMT device. The operating frequencies are 4.00 ㎓, 2.01 ㎓, and 1.99 ㎓ for LO, RF, and IF, respectively. Conversion gain is measured to be 12.5 ㏈ and 1 ㏈ compression point -34 ㏈m at the LO power of -7 ㏈m. The mixer fabricated in this research is the single-ended type, where RF leakage signal appears inevitably at the If port because RF and If frequencies are almost the same. The circuit topology suggested here can be applied directly to the design of balanced-type mixers and phase conjugators.

Performance Analysis of Drone-type Base Station on the mmWave According to Radio Resource Management Policy (무선자원 운용방안에 따른 밀리미터파 대역에서의 드론형 기지국 성능분석)

  • Jeong, Min-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.917-926
    • /
    • 2019
  • At present, TICN has been developed and distributed for military command control. TICN is known as the 3.5G mobile communication technology based on WiBro, which shows technical limitation in the field operation situation. Accordingly, the drone-type base station platform is attracting attention as an alternative to overcome technical limitations such as difficulty in securing communication LoS and limiting expeditious network configuration. In this study, we performed simulation performance evaluation of drone-type base station operation in 28 GHz that is considered most suitable for cellular communication within mmWave frequency band. Specifically, we analyzed the changes in throughput and fairness performance according to radio resource management policies such as frequency reuse and scheduling in multi-cell topology. Through this, we tried to provide insights on the operation philosophy on drone-type base station.

Modeling and Simulation for using Multiple Routing Protocols in Wireless Sensor Networks (무선 센서 네트워크에서 다중 라우팅 프로토콜 사용을 위한 모델링과 시뮬레이션)

  • Nam, Su Man;Cho, Tae Ho;Kim, Hyung Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.73-82
    • /
    • 2020
  • In the fourth industrial revolution, wireless sensor networks (WSNs) are an important element of collecting and analyzing data in a variety of environments without human intervention. This sensor network is greatly affected by topology and routing protocols. Routing protocols, which affect energy consumption, are executed after deploying sensor nodes. Once built, they are difficult to change. Before the WSN is deployed, a routing protocol is carefully selected in view of various environments and the performance of the protocol is evaluated. In this paper, we propose a model to simulate multiple routing protocols using a discrete event system specification (DEVS). The DEVS-based proposed model simulates various situations without changes and structures of the its model as algorithms of the routing protocols are implemented in its coordinators model. To verify normal behaviors of the proposed model, the number of report delivery and the energy consumption of the sensor network were compared using representative protocols LEACH and Dijkstra. As a result, it was confirmed that the proposed model executes normally in both routing protocols.

Isogeometric Optimal Design of Kelvin Lattice Structures for Extremal Band Gaps (극대화된 밴드갭을 갖는 켈빈 격자 구조의 아이소-지오메트릭 최적 설계)

  • Choi, Myung-Jin;Oh, Myung-Hoon;Cho, Seonho;Koo, Bonyong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.4
    • /
    • pp.241-247
    • /
    • 2019
  • A band gap refers to a certain frequency range where the propagation of mechanical waves is prohibited. This work focuses on engineering three-dimensional Kelvin lattices having external band gaps at low audible frequency ranges using a gradient-based design optimization method. Elastic wave propagation in an infinite periodic lattice is investigated by employing the Bloch theorem. We model the ligaments using a shear-deformable beam model obtained by consistent linearization in a geometrically exact beam theory. For a given lattice topology, we enlarge band gap sizes by controlling the configuration of the beam neutral axis and cross-section thickness that are smoothly parameterized by B-spline basis functions within the isogeometric analysis framework.

Fusion of Blockchain-IoT network to improve supply chain traceability using Ethermint Smart chain: A Review

  • George, Geethu Mary;Jayashree, LS
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3694-3722
    • /
    • 2022
  • In today's globalized world, there is no transparency in exchanging data and information between producers and consumers. However, these tasks experience many challenges, such as administrative barriers, confidential data leakage, and extensive time delays. To overcome these challenges, we propose a decentralized, secured, and verified smart chain framework using Ethereum Smart Contract which employs Inter Planetary File Systems (IPFS) and MongoDB as storage systems to automate the process and exchange information into blocks using the Tendermint algorithm. The proposed work promotes complete traceability of the product, ensures data integrity and transparency in addition to providing security to their personal information using the Lelantos mode of shipping. The Tendermint algorithm helps to speed up the process of validating and authenticating the transaction quickly. More so in this time of pandemic, it is easier to meet the needs of customers through the Ethermint Smart Chain, which increases customer satisfaction, thus boosting their confidence. Moreover, Smart contracts help to exploit more international transaction services and provide an instant block time finality of around 5 sec using Ethermint. The paper concludes with a description of product storage and distribution adopting the Ethermint technique. The proposed system was executed based on the Ethereum-Tendermint Smart chain. Experiments were conducted on variable block sizes and the number of transactions. The experimental results indicate that the proposed system seems to perform better than existing blockchain-based systems. Two configuration files were used, the first one was to describe the storage part, including its topology. The second one was a modified file to include the test rounds that Caliper should execute, including the running time and the workload content. Our findings indicate this is a promising technology for food supply chain storage and distribution.

Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method

  • Yuan Wang;Xinyu Liu;Lingfeng Zhou;Qi Dong
    • Geomechanics and Engineering
    • /
    • v.34 no.6
    • /
    • pp.683-696
    • /
    • 2023
  • The destruction and fracture of rock masses are crucial components in engineering and there is an increasing demand for the study of the influence of rock mass heterogeneity on the safety of engineering projects. The numerical manifold method (NMM) has a unified solution format for continuous and discontinuous problems. In most NMM studies, material homogeneity has been assumed and despite this simplification, fracture mechanics remain complex and simulations are inefficient because of the complicated topology updating operations that are needed after crack propagation. These operations become computationally expensive especially in the cases of heterogeneous materials. In this study, a heterogeneous model algorithm based on stochastic theory was developed and introduced into the NMM. A new fracture algorithm was developed to simulate the rupture zone. The algorithm was validated for the examples of the four-point shear beam and semi-circular bend. Results show that the algorithm can efficiently simulate the rupture zone of heterogeneous rock masses. Heterogeneity has a powerful effect on the macroscopic failure characteristics and uniaxial compressive strength of rock masses. The peak strength of homogeneous material (with heterogeneity or standard deviation of 0) is 2.4 times that of heterogeneous material (with heterogeneity of 11.0). Moreover, the local distribution of parameter values can affect the configuration of rupture zones in rock masses. The local distribution also influences the peak value on the stress-strain curve and the residual strength. The post-peak stress-strain curve envelope from 60 random calculations can be used as an estimate of the strength of engineering rock masses.

Dispersion-managed Link with Unequally Residual Dispersion per Span with Respect to Non-midway Optical Phase Conjugator (Non-midway 광 위상 공액기를 중심으로 중계 구간 당 잉여 분산이 일치하지 않는 분산 제어 링크)

  • Seong-Real Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.517-522
    • /
    • 2021
  • Optical dispersion-managed link combined with optical phase conjugation for compensating of the distorted optical signals due to chromatic dispersion and nonlinear effects, which is required to implement long-haul wavelength division multiplexed system, is proposed and assessed in viewpoint of network topology flexibility. Optical phase conjugator capable to compensate for the distorted optical signal due to nonlinear effects is placed non-midway of total transmission distance. And, in dispersion-managed link, residual dispersion per span (RDPS) of each fiber spans in former half section and latter half section with respect to optical phase conjugator are different to each other. Simulation results show when the RDPS of each fiber sections in one half section makes it's own net residual dispersion slight different from another half section's net residual dispersion, the compensation effect in the proposed link configuration is more increased.

3D Node Deployment and Network Configuration Methods for Improvement of Node Coverage and Network Connectivity (커버리지와 네트워크 연결성 향상을 위한 3차원 공간 노드 배치 및 망 구성 방법)

  • Kim, Yong-Hyun;Kim, Lee-Hyeong;Ahn, Mirim;Chung, Kwangsue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.9
    • /
    • pp.778-786
    • /
    • 2012
  • Sensors that are used on wireless sensor networks can be divided into two types: directional sensors, such as PIR, image, and electromagnetic sensors; and non-directional sensors, such as seismic, acoustic and magnetic sensors. In order to guarantee the line-of-sight of a directional sensor, the installation location of the sensor must be higher than ground level. Among non-directional sensors, seismic sensors should be installed on the ground in order to ensure the maximal performance. As a result, seismic sensors may have network connectivity problems due to communication failure. In this paper, we propose a 3D node deployment method to maximize the coverage and the network connectivity considering the sensor-specific properties. The proposed method is for non-directional sensors to be placed on the ground, while the directional sensor is installed above the ground, using trees or poles, to maximize the coverage. As a result, through the topology that the detection data from non-directional sensors are transmitted to the directional sensor, we can maximize the network connectivity. Simulation results show that our strategy improves sensor coverage and network connectivity.

New Contention Window Control Algorithm for TCP Performance Enhancement in IEEE 802.11 based Wireless Multi-hop Networks (IEEE 802.11 기반 무선 멀티홉 망에서 TCP의 성능향상을 위한 새로운 경쟁 윈도우 제어 알고리즘)

  • Gi In-Huh;Lee Gi-Ra;Lee Jae-Yong;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.165-174
    • /
    • 2006
  • In this paper, we propose a new contention window control algorithm to increase TCP performance in wireless multi-hop networks. The new contention window control algorithm is suggested to reduce the hidden and exposed terminal problems of wireless multi-hop networks. Most of packet drops in wireless multi-hop networks results from hidden and exposed terminal problems, not from collisions. However, in normal DCF algorithm a failed user increases its contention window exponentially, thus it reduces the success probability of fined nodes. This phenomenon causes burst data transmissions in a particular node that already was successful in packet transmission, because the success probability increases due to short contention window. However, other nodes that fail to transmit packet data until maximum retransmission attempts try to set up new routing path configuration in network layer, which cause TCP performance degradation and restrain seamless data transmission. To solve these problems, the proposed algorithm increases the number of back-of retransmissions to increase the success probability of MAC transmission, and fixes the contention window at a predetermined value. By using ns-2 simulation for the chain and grid topology, we show that the proposed algorithm enhances the TCP performance.