• Title/Summary/Keyword: Topology Discovery Protocol

Search Result 26, Processing Time 0.02 seconds

A Research of LEACH Protocol improved Mobility and Connectivity on WSN using Feature of AOMDV and Vibration Sensor (AOMDV의 특성과 진동 센서를 적용한 이동성과 연결성이 개선된 WSN용 LEACH 프로토콜 연구)

  • Lee, Yang-Min;Won, Joon-We;Cha, Mi-Yang;Lee, Jae-Kee
    • The KIPS Transactions:PartC
    • /
    • v.18C no.3
    • /
    • pp.167-178
    • /
    • 2011
  • As the growth of ubiquitous services, various types of ad hoc networks have emerged. In particular, wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are widely known ad hoc networks, but there are also other kinds of wireless ad hoc networks in which the characteristics of the aforementioned two network types are mixed together. This paper proposes a variant of the Low Energy Adaptive Cluster Hierarchy (LEACH) routing protocol modified to be suitable in such a combined network environment. That is, the proposed routing protocol provides node detection and route discovery/maintenance in a network with a large number of mobile sensor nodes, while preserving node mobility, network connectivity, and energy efficiency. The proposed routing protocol is implemented with a multi-hop multi-path algorithm, a topology reconfiguration technique using node movement estimation and vibration sensors, and an efficient path selection and data transmission technique for a great many moving nodes. In the experiments, the performance of the proposed protocol is demonstrated by comparing it to the conventional LEACH protocol.

An AODV-Based Two Hops Dynamic Route Maintenance in MANET (MANET에서의 AODV 기반 2홉 동적 경로유지 기법 연구)

  • Moon, Dae-Keun;Kim, Hag-Bae
    • The KIPS Transactions:PartC
    • /
    • v.14C no.2
    • /
    • pp.191-198
    • /
    • 2007
  • A mobile ad-hoc network (MANET) is an autonomous, infrastructure-less system that consists of mobile nodes. In MANET, on demand routing protocols are usually used because network topology changes frequently. AODV, which is a representative on demand routing protocol, operates using the routing table of each node that includes next hop of a route for forwarding packets. It maintains the established route if there is not an expiration of route or any link break. In the paper, we propose a partially adaptive route maintenance scheme (AODV-PA) based on AODV, which provides dynamic route modification of initial route for selecting the effective route using not only next hop but also next-hop of next-hop (i.e. 2-hop next node) acquired through route discovery process. In addition, the proposed scheme additionally manages the routing table for preventing exceptional link breaks by route modification using HELLO messages. We use NS 2 for the computer simulation and validate that the proposed scheme is better than general AODV in terms of packet delivery ratio, latency, routing overhead.

Improving the Performance of AODV(-PGB) based on Position-based Routing Repair Algorithm in VANET

  • Jung, Sung-Dae;Lee, Sang-Sun;Oh, Hyun-Seo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1063-1079
    • /
    • 2010
  • Vehicle ad hoc networks (VANET) are one of the most important technologies to provide various ITS services. While VANET requires rapid and reliable transmission, packet transmission in VANET is unstable because of high mobility. Many routing protocols have been proposed and assessed to improve the efficiency of VANET. However, topology-based routing protocols generate heavy overhead and long delay, and position-based routing protocols have frequent packet loss due to inaccurate node position. In this paper, we propose a position-based routing repair algorithm to improve the efficiency of VANET. This algorithm is proposed based on the premise that AODV (-PGB) can be used effectively in VANET, if the discovery, maintenance and repair mechanism of AODV is optimized for the features of VANET. The main focus of this algorithm is that the relay node can determine whether its alternative node exits and judge whether the routing path is disconnected. If the relay node is about to swerve from the routing path in a multi-hop network, the node recognizes the possibility of path loss based on a defined critical domain. The node then transmits a handover packet to the next hop node, alternative nodes and previous node. The next node repairs the alternative path before path loss occurs to maintain connectivity and provide seamless service. We simulated protocols using both the ideal traffic model and the realistic traffic model to assess the proposed algorithm. The result shows that the protocols that include the proposed algorithm have fewer path losses, lower overhead, shorter delay and higher data throughput compared with other protocols in VANET.

A Reliable Route Selection Algorithm in Mobile Ad-hoc Networks (이동 애드혹 네트워크에서의 안정 경로 선택 알고리즘)

  • Kim, Won-Ik;Suh, Young-Joo;An, Syung-Og
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.314-323
    • /
    • 2002
  • The routing protocols designed for wired networks can hardly be used for mobile ad-hoc networks due to limited bandwidth of wireless transmission and unpredictable topological change. Recently, several routing protocols for mobile ad-hoc networks have been Proposed. However, when theme protocols are applied to support real time services like multimedia transmission, they still have problems in ad-hoc networks, where the topology changes drastically. In this paper, we propose a new route selection algorithm which selects the most reliable route that is impervious to route failures by topological changes by mobile hoots. For reliable route selection, the concept of virtual zone (stable zone and caution zone) is proposed. The zone is located in a mobile node'transmission range and determined by mobile node's mobility information received by Global Positioning System (GPS). The proposed algorithm is applied to the route discovery procedure of the existing on-demand routing protocol, AODV, and evaluated by simulation in various traffic conditions and mobility patterns.

Route-optimized Handoff in Mobile CORBA Environment (Mobile CORBA 환경에서 게이트웨이간의 경로최적화 핸드오프)

  • Shin, Hye-Ryung;Lee, Hyung-Woo;Kim, Ju-Ho
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.224-232
    • /
    • 2002
  • The routing protocols designed for wired networks can hardly be used for mobile ad-hoc networks due to limited bandwidth of wireless transmission and unpredictable topological change. Recently, several routing protocols for mobile ad-hoc networks have been proposed. However, when these protocols are applied to support real time services like multimedia transmission, they still have problems in ad-hoe networks, where the topology changes drastically. In this paper, we propose a new route selection algorithm which selects the most reliable rouse that is impervious to route failures by topological changes by mobile hosts. For reliable route selection, the concept of virtual zone (stable lone and caution zone) is proposed. The lone is located in a mobile node's transmission range and determined by mobile node's mobility information received by Global Positioning System (GPS). The proposed algorithm is applied to the route discovery procedure of the existing on-demand routing protocol, AODV, and evaluated by simulation in various traffic conditions and mobility patterns.

A Study on the Zone-Key based Secure Routing Scheme in MANET (MANET에서 영역-키 기반 보안 라우팅 기법에 관한 연구)

  • Yang, Hwan Seok;Kim, Young Sun
    • Convergence Security Journal
    • /
    • v.20 no.5
    • /
    • pp.33-39
    • /
    • 2020
  • In MANET consisting of only mobile nodes, all nodes serve as routes. However, the dynamic topology due to frequent movement of nodes degrades routing performance and is also cause of many security vulnerabilities. Therefore, security must be applied to routing techniques that can influence the performance of MANET. In this paper, we propose a technique for efficiently responding to various routing attacks and safe data transmission through application of zone-key based security routing techniques. A zone-based network structure was used, and a management node that manages member nodes in each zone was used in the proposed technique. In addition, the damage from the attacking node was minimized by issuing a key to each node and applying this to a routing technique. The zone management node issues a key for encryption routing information and manages the issuance information. A member node that wants to transmit data encrypts routing in formation using a key issued from the zone management node, and then performs path discovery using this. The improved performance of the proposed technique was confirmed through a comparative experiment with the CBSR and ARNA technique, excellent performance was confirmed through experiments.