• Title/Summary/Keyword: Topological Modeling

Search Result 94, Processing Time 0.026 seconds

Modeling Spatial Data in a geo-DBMS using 3D Primitives (Geo-DBMS의 3차원 Primitive를 이용한 공간정보데이터 구축 및 활용 - CityGML을 기반으로 -)

  • Park, In-Hye;Lee, Ji-Yeong
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.3
    • /
    • pp.50-54
    • /
    • 2009
  • Recently, many researches have been conducted to develop 3D Indoor/Outdoor Spatial Data Models. The 3D data created based on these data models have complex data structures. In order to manage these data efficiently, it is better to use a DBMS. There have been many researches to maintain the 3D data in Geo-DBMS, such that Oosterom (2002) and Arens (2005) developed a method to store 3D Building model, geometric and topological data of coverage in DBMSa. In this study, we propose a method to store the CityGML data into the RDBMS, Oracle Spatial 11g.

  • PDF

Segmentation of Computed Tomography using The Geometric Active Contour Model (기하학적 동적 외곽선 모델을 이용한 X-ray 단층촬영영상의 영상추출)

  • Jang, D.P.;Kim, S.I.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.541-545
    • /
    • 1997
  • This paper presents a modified geometric active contour model or edge detection and segmentation of computed tomography(CT) scan images. The method is based on the level setup approach developed by Osher and Sethian and the modeling of propagation fronts with curvature dependent speeds by Malladi. Based on above algorithms, the geometric active contour is obtained through a particular level set of hypersurface lowing along its gradient force and curvature force. This technique retains the attractive feature which is topological and geometric flexibility of the contour in recovering objects with complex shapes and unknown topologies. But there are limitations in this algorithm which are being not able to separate the object with weak difference from neighbor object. So we use speed limitation filter to overcome those problems. We apply a 2D model to various synthetic cases and the three cases of real CT scan images in order to segment objects with complicated shapes and topologies. From the results, the presented model confirms that it attracts very naturally and efficiently to the desired feature of CT scan images.

  • PDF

Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface - (일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 -)

  • Hong, Ji-Hak;Sung, Woo-Jae
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.

Effects of Numerical Modeling on Concrete Heterogeneity (콘크리트 비균질성에 대한 수치모델의 영향)

  • Rhee, In-Kyu;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.2 s.92
    • /
    • pp.189-198
    • /
    • 2006
  • The composition of most engineering materials is heterogeneous at some degree. It is simply a question of scale at which the level of heterogeneity becomes apparent. In the case of cementitious granular materials such as concrete the heterogeneity appears at the mesoscale where it is comprised of aggregate particles, a hardened cement paste and voids. Since it is difficult to consider each separate particle in the topological description explicitly, numerical models of the meso-structure are normally confined to two-phase matrix particle composites in which only the larger inclusions are accounted for. 2-D and 3-D concrete blocks(Representative Volume Element, RVE) are used to simulating heterogeneous concrete meso-structures in the form of aggregates in the hardened mortar with nearly zero-thickness linear or planar interfaces. The numerical sensitivity of these meso-structures are Investigated with respect to the different morphologies of heterogeneity and the different level of coupling constant among fracture mode I, II and III. In addition, a numerically homogenized concrete block in 3-D using Hashin-Shtrikman variational bounds provides an evidence of the effective cracking paths which are quite different with those of heterogenous concrete block. However, their average force-displacement relationship show a pretty close match each other.

3D Building Reconstruction and Visualization by Clustering Airborne LiDAR Data and Roof Shape Analysis

  • Lee, Dong-Cheon;Jung, Hyung-Sup;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.507-516
    • /
    • 2007
  • Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.

Adaptive Multi-routing Protocol for a High Mobility MANET (변동성이 높은 이동 애드 혹 네트워크를 위한 적응적 다중 라우팅 프로토콜 적용 기법)

  • Deepak, G.C.;Heo, Ung;Choi, Jae-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.2
    • /
    • pp.103-110
    • /
    • 2008
  • When there is uncertainty in topological rate of change, motility model and terrain condition, the performance severely degrades in MANET. The concept of transition of routing protocol on the fly according to the network parameters such as coverage, connectivity and mobility etc. may counterbalance the problems stated above. The mathematical modeling of feedback parameters has been derived, and the architecture for the multi-routing protocol system providing an adaptation from one routing protocol to another is also investigated. This paper is extensively devoted on the analysis of mobility, connectivity and their effects on the network and finally transition into another routing protocol according to them.

Dimension Reduction of Solid Models by Mid-Surface Generation

  • Sheen, Dong-Pyoung;Son, Tae-Geun;Ryu, Cheol-Ho;Lee, Sang-Hun;Lee, Kun-Woo
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • Recently, feature-based solid modeling systems have been widely used in product design. However, for engineering analysis of a product model, an ed CAD model composed of mid-surfaces is desirable for conditions in which the ed model does not affect analysis result seriously. To meet this requirement, a variety of solid ion methods such as MAT (medial axis transformation) have been proposed to provide an ed CAE model from a solid design model. The algorithm of the MAT approach can be applied to any complicated solid model. However, additional work to trim and extend some parts of the result is required to obtain a practically useful CAE model because the inscribed sphere used in the MAT method generates insufficient surfaces with branches. On the other hand, the mid-surface ion approach supports a practical method for generating a two-dimensional ed model, even though it has difficulties in creating a mid-surface from some complicated parts. In this paper, we propose a dimension reduction approach on solid models based on the midsurface abstraction approach. This approach simplifies the solid model by abbreviating or removing trivial features first such as the fillet, mounting, or protrusion. The geometry of each face is replaced with mid-patches from the simplified model, and then unnecessary topological entities are deleted to generate a clean ed model. Also, additional work, such as extending and stitching mid-patches, completes the generation of a mid-surface model from the patches.

The Case Study : The Efficiency of Using UAV and 3D-model for Mine Reclamation Work Monitoring (무인항공기와 3차원 지표모델의 광해방지사업 모니터링에 대한 효율성 고찰)

  • Kim, Seyoung;Yu, Jaehyung;Shin, Ji Hye;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • This study investigated the effectiveness of Unmanned Aerial Vehicle (UAV) and 3D modeling on mine reclamation monitoring. The high spatial resolution of 3.8 cm ortho-mosaic image and Digital Elevation Model (DEM) are constructed based on UAV air survey. The ortho-mosaic image effectively shows mine reclamation activities and recognize objects and topological changes in the image. The comparative analysis of 3D models between UAV based DEM and report based DEM reveals that total amount of $268,672m^3$ additional dumping of contaminated soil is equivalent to 710,000 ton. It concludes that a UAV based survey enables high accuracy spatial information extraction for mine reclamation activities with high efficiency. It is expected that UAV survey will be very effectively used for preliminary data acquisition and project monitoring for mine reclamation activities.

Experimental Validation of Topology Design Optimization Considering Lamination Direction of Three-dimensional Printing (3D 프린팅 적층 방향을 고려한 위상최적설계의 실험적 검증)

  • Park, Hee-Man;Lee, Gyu-Bin;Kim, Jin-san;Seon, Chae-Rim;Yoon, Minho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.191-196
    • /
    • 2022
  • In this study, the anisotropic mechanical property of fused deposition modeling three-dimensional (3D) printing based on lamination direction was verified by a tensile test. Moreover, the property was applied to solid isotropic materials with penalization-based topology optimization. The case of the lower control arm, one of the automotive suspension components, was considered as a benchmark problem. The optimal topological results varied depending on the external load and anisotropic property. Based on these results, two test specimens were fabricated by varying the lamination direction of 3D printing; a tensile test utilizing 3D non-contact strain gauge was also conducted. The measured strain was compared with that obtained by computer-aided engineering response analysis. Quantitatively, the measurement and analysis results are found to have good agreement. The effectiveness of topology optimization considering the lamination direction of 3D printing was confirmed by the experimental result.

A Study to Improve the Spatial Data Design of Korean Reach File to Support TMDL Works (TMDL 업무 지원을 위한 Korean Reach File 공간자료 설계 개선 연구)

  • Lee, Chol Young;Kim, Kye Hyun;Park, Yong Gil;Lee, Hyuk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • In order to manage water quality efficiently and systematically through TMDL (Total Maximum Daily Load), the demand for the construction of spatial data for stream networks has increased for use with GIS-based water quality modeling, data management and spatial analysis. The objective of this study was to present an improved KRF (Korean Reach File) design as framework data for domestic stream networks to be used for various purposes in relation to the TMDL. In order to achieve this goal, the US EPA's RF (River Reach File) was initially reviewed. The improved design of the graphic and attribute data for the KRF based on the design of the EPA's RF was presented. To verify the results, the KRF was created for the Han River Basin. In total, 2,047 stream reaches were divided and the relevant nodes were generated at 2,048 points in the study area. The unique identifiers for each spatial object were input into the KRF without redundancy. This approach can serve as a means of linking the KRF with related database. Also, the enhanced topological information was included as attributes of the KRF. Therefore, the KRF can be used in conjunction with various types of network analysis. The utilization of KRF for water quality modeling, data management and spatial analysis as they pertain to the applicability of the TMDL should be conducted.