• Title/Summary/Keyword: Topographical changes

Search Result 135, Processing Time 0.025 seconds

Terrestrial LiDAR Measurements and Analysis of Topographical Changes on Malipo Beach (지상 LiDAR를 이용한 만리포 해변 정밀 지형측량 및 지형 변화 분석)

  • Shim, Jae-Seol;Kim, Jin-Ah;Park, Han-San;Kim, Seon-Jeong
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • A terrestrial LiDAR was used to acquire precise and high-resolution topographical information of Malipo beach, Korea. Terrestrial LiDAR and RTK-DGPS (VRS) were mounted on top of a survey vehicle and used to scan 20 times stop-and-go method with 250 m spacing intervals at ebb tides. In total, 7 measurements were made periodically from 2008 to 2009 and after each beach replenishment event. We carried out GIS-based 3D spatial analysis such as slope and volume calculations in order to assess topographical changes over time. In relation to beach replenishment, comparative analysis of each volume change revealed them to be similar. This result indicates that the terrestrial LiDAR measurements are accurate and can be used to analyze temporal topographical changes. In conclusion, the methodology employed in this study can be used efficiently to exercise coastal management through monitoring and analyzing beach process such as erosion and deposition.

Spatial-temporal Analysis of Topographical Change at the Malipo Beach (만리포 사빈의 시계열 3차원 지형 변화 분석)

  • PARK, Han San
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.1
    • /
    • pp.97-109
    • /
    • 2013
  • This study introduces an analysis of the quantitative characteristics of topography and topographical changes based on precise 3D topography through 6 times surveys from December 2008 to January 2010 using Terrestrial LIDAR on the Malipo beach. The Malipo sand beach is mostly located between 0m to 1.5m MSL. The area of the beach above 2.25m, the Mean High Water, is very small. It have characteristics of topographical change of erosion and deposition along the entire coast line which more apparently appear in the northern beach than the southern part of the beach. Erosion prevails from spring to autumn, while during winter both erosion and deposition largely occur. Volumes from first and last survey were almost equal.

Analysis of Quantitative Topographical Change in Eulsuk-Island Using Aerial Images (항공영상을 이용한 을숙도 지형의 정량적 변화 분석)

  • Lee, Jae-One;Song, Yu-Jin;Kim, Yong-Suk;Park, Hong-Joo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.527-534
    • /
    • 2011
  • This paper describes an analysis of topographical changes to the Eulsuk-Island at the Nakdong River Estuary using a long-term dataset of high resolution aerial images from 1983 to 2007. Ground control surveying was performed at some feature points using GPS(Global Positioning System) to accomplish AT(Aerial Triangulation) for past aerial images. Even if some still existing feature points appeared on old aerial images were used as GCPs(Ground Control Points) for past aerial images in AT, its accuracy reached at 1m level. Since then, a quantitative analysis of topographical changes was conducted on digital orthophotos produced by a series of aerial images taken by different years. The change volume of total area, construction, vegetation, buildings and roads could be extracted per each period in study area. The total area decreased from 1983 to 1992, but it has not almost changed since 1992. According to the continuous development, the area of vegetation has steadily decreased, while that of buildings and roads has generally increased. The result of this study can provide us with invaluable base data for further topographical change monitoring in Eulsuk-Island and Nakdong River estuary caused by continuous development in this area.

Variation in Vegetation Area caused by Topographical Change at Jinudo in the Nakdong Estuary (낙동강 하구역 진우도내 지형변동에 따른 식생면적의 변화)

  • Ryu, Sung-Hoon;Lee, In-Cheol;Park, So-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.19-24
    • /
    • 2009
  • In order to analysis the variation in vegetation area caused by topographical change at Jinudo in the Nakdong estuary, we used aerial photographs of Jinudo from 1998 to 2006. To extract an accuracy shoreline from these aerial photographs, a tide calibration was performed. We also estimated the annual variation in topographic area and vegetation area, and then analyzed the relationship between them by a correlation analysis. The following results were obtained: 1) The calibrated shoreline distance of Jinudo from 1998 to 2006 was estimated to have a range of (-)1,927 cm to (+)4,671 cm. 2) Annual changes in the topographic area and vegetation area in Jinudo have been increasing gradually from 1998, and the correlation coefficient between topographic area and vegetation area is 0.97. 3) The estimated topographic areas were with following order: southern (III), eastern (IV), northern (II) and western (I), while for the vegetation area, the order was southern (III), northern (II), eastern (IV) and western (I). 4) The vegetation area of the southern region (III) of Jinudo had the largest size among the regions, and was calculated to be $4.3{\sim}5.4$ times larger than the eastern region (IV).

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.

DNA Band Recognition using the Topographical Features of Images (영상의 지형적 특징에 의한 유전밴드 인식)

  • Hwang, Deok-In;Gong, Seong-Gon;Jo, Seong-Won;Jo, Dong-Seop;Lee, Seung-Hwan
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1350-1358
    • /
    • 1999
  • 이 논문에서는 유전밴드 영상신호에 포함되어 있는 지형적 특징을 이용하여 밝기의 변화가 일정하지 않은 유전밴드를 인식하는 방법을 연구하였다. 유전밴드는 동일인을 식별하는데 있어서 지문보다 높은 신뢰성을 가지고 있으므로, 유전밴드 영상에서 유전밴드의 유무와 위치를 자동적으로 검출하는 것은 매우 중요하다. 레인내의 밝기의 변화가 일정한 유전밴드는 미분연산자에 의해 검출할 수 있지만, 밝기의 변화가 일정하지 않은 레인내의 유전밴드는 일반적인 인식방법에 의해서는 검출하기 어렵다. 따라서 유전밴드 영상으로부터 지형적 특징을 추출하고, 이것으로부터 계산한 곡률(curvature)의 크기에 의해 유전밴드를 인식함으로써 레인의 밝기가 변화하는 경우에도 효과적으로 인식하였다.Abstract This paper presents recognition of DNA band using the topographical features of DNA band images. The DNA band provides a more reliable way of identification than fingerprints. Recognition based on differentiation operators can easily detect the DNA band if the brightness of lane in the image is almost uniform. When the brightness of the lane changes gradually, the DNA bands are hard to be recognized. Using the curvature magnitude of the lane computed from topographic features extracted from DNA images, the DNA bands are efficiently recognized in the lane whose brightness changes.

The Effects of DEM Resolution on Hydrological Simulation in BASINS-HSPF Modeling

  • Jeon, Ji-Hong;Yoon, Chun-Gyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.453-456
    • /
    • 2002
  • In this study, the effect of DEM resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using BASINS (Better Assessment Science Integrating point and Nonpoint Source) for Heukcheon watershed (303.3km2) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might effects on the simulation of water quantity and quality. The area weighted average watershed slope became lower but the length weighted average channel slope became higher as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation DEM mesh size of 100m is recommended for this watershed.

  • PDF