• Title/Summary/Keyword: Topographic Patterns

Search Result 55, Processing Time 0.031 seconds

Gene Expression Pattern Analysis via Latent Variable Models Coupled with Topographic Clustering

  • Chang, Jeong-Ho;Chi, Sung Wook;Zhang, Byoung Tak
    • Genomics & Informatics
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 2003
  • We present a latent variable model-based approach to the analysis of gene expression patterns, coupled with topographic clustering. Aspect model, a latent variable model for dyadic data, is applied to extract latent patterns underlying complex variations of gene expression levels. Then a topographic clustering is performed to find coherent groups of genes, based on the extracted latent patterns as well as individual gene expression behaviors. Applied to cell cycle­regulated genes of the yeast Saccharomyces cerevisiae, the proposed method could discover biologically meaningful patterns related with characteristic expression behavior in particular cell cycle phases. In addition, the display of the variation in the composition of these latent patterns on the cluster map provided more facilitated interpretation of the resulting cluster structure. From this, we argue that latent variable models, coupled with topographic clustering, are a promising tool for explorative analysis of gene expression data.

Analysis of Corneal Topography for Korean College Students Based on Computer-Assisted Videokeratography (각막지형도 검사를 이용한 대학생의 각막형태에 대한 연구)

  • Lee, Seok-Ju;Ryu, Guen-Chang;Shin, Cheol-Guen;Seong, Jeong-Sub;Kim, In-Suk
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.3
    • /
    • pp.241-247
    • /
    • 2006
  • Purpose : To define the distribution of normal corneal topographic patterns of Korean college students and compare them with previously published western data, Bogan et al's study. Methods : Computerized corneal topography was performed 220eyes normal subjects using CTK-922(Topography, swiss made). Mean age of the subjects was 23.2 yr.(range 19 to 57 yr.). The color-coded videokeratographs were classified by a masked observer according to the Bogan et al's classification such as round, oval, symmetric bow tie, asymmetric bow tie, and irregular. Results: The results revealed 57 eyes(25.9%) had round, 14 (6.4%) oval , 41(18.6%)symmetric bow tie, 78(35.5%) asymmetric bow tie, and 30(13.6%) irregular pattern. Conclusions : Our results of topographic patterns show the tendency of more irregular and less round topographic pattern in Korean college students, as compared to that of western adults.

  • PDF

Recognizing asymmetric moire patterns for human spinal deformity detection

  • Kim, Hyoung-Seop;Hiroshi UENO;Seiji ISHIKAWA;Yoshinori Otsuka
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.568-571
    • /
    • 1997
  • Recently, the number of techniques for analyzing medical images has been increasing in computer vision, employing X-ray CT images, ultrasound images, MR images, moire topographic images, etc. Spinal deformity is a serious problem especially for teenagers and medical doctors inspect moire topographic images of their backs visually for the primary screening. If a subject is normal, the moire image is almost symmetric with respect to the middle line of the subject's back, otherwise it shows asymmetric shape. In this paper, an image analysis technique is described for discriminating suspicious cases from normal in human spinal deformity by recognizing asymmetric moire images of human backs. The principal axes which are sensitive to asymmetry of the moire image are extracted at two parts on a subject's back and their angles are evaluated with respect to the detected middle line of the back. The two angles compose a 2-D feature space and inspected cases are divided into two clusters in the space by a linear discriminant function based on the Mahalanobis distance. Given 120 cases, 60 normal and 60 abnormal, the leave-out method was applied for the recognition and 75% recognition rate was achieved.

  • PDF

Experimental Study on the Surface Defects of Scribed Glass Sheets (절단 유리판의 표면결함에 관한 실험적 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.332-337
    • /
    • 2008
  • This paper presents the surface defect analysis based on the experimental investigation of scribed glasses. The scribing process by a diamond wheel cutter is widely used as a reliable and inexpensive method for sizing of glass sheets. The wheel cutter generates a small median crack on the glass surface, which is then propagated through the glass thickness for complete separation. The surface contour patterns in which are formed during a scribing process are strongly related to wheel cutter parameters such as wheel tip surface finish, tip angle and wheel diameter, and cutting process parameters such as scribing pressure, speed and tooling technique. The scribed surface of a glass sheet provides normal Wallner lines, which represent regular median cracks and crack propagation in glass thickness, and abnormal surface roughness patterns. In this experimental study, normal and abnormal surface topographic patterns are classified based on the surface defect profiles of scribed glass sheets. A normal surface of a scribed glass sheet shows regular Wallner lines with deep median cracks. But some specimens of scribed glass sheets show that abnormal surface profiles of glass sheets in two pieces are represented by a chipping, irregular surface cracks in depth, edge cracks, and combined crack defects. These surface crack patterns are strongly related to easy breakage of the scribed glass imposed by external forces. Thus the scribed glass with abnormal crack patterns should be removed during a quality control process based on the surface defect classification method as demonstrated in this study.

Assessment of Topographic Normalization in Jeju Island with Landsat 7 ETM+ and ASTER GDEM Data (Landsat 7 ETM+ 영상과 ASTER GDEM 자료를 이용한 제주도 지역의 지형보정 효과 분석)

  • Hyun, Chang-Uk;Park, Hyeong-Dong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.4
    • /
    • pp.393-407
    • /
    • 2012
  • This study focuses on the correction of topographic effects caused by a combination of solar elevation and azimuth, and topographic relief in single optical remote sensing imagery, and by a combination of changes in position of the sun and topographic relief in comparative analysis of multi-temporal imageries. For the Jeju Island, Republic of Korea, where Mt. Halla and various cinder cones are located, a Landsat 7 ETM+ imagery and ASTER GDEM data were used to normalize the topographic effects on the imagery, using two topographic normalization methods: cosine correction assuming a Lambertian condition and assuming a non-Lambertian c-correction, with kernel sizes of $3{\times}3$, $5{\times}5$, $7{\times}7$, and $9{\times}9$ pixels. The effects of each correction method and kernel size were then evaluated. The c-correction with a kernel size of $7{\times}7$ produced the best result in the case of a land area with various land-cover types. For a land-cover type of forest extracted from an unsupervised classification result using the ISODATA method, the c-correction with a kernel size of $9{\times}9$ produced the best result, and this topographic normalization for a single land cover type yielded better compensation for topographic effects than in the case of an area with various land-cover types. In applying the relative radiometric normalization to topographically normalized three multi-temporal imageries, more invariant spectral reflectance was obtained for infrared bands and the spectral reflectance patterns were preserved in visible bands, compared with un-normalized imageries. The results show that c-correction considering the remaining reflectance energy from adjacent topography or imperfect atmospheric correction yielded superior normalization results than cosine correction. The normalization results were also improved by increasing the kernel size to compensate for vertical and horizontal errors, and for displacement between satellite imagery and ASTER GDEM.

Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation

  • Lee, Hyomee;Moon, Byung-Kwon;Wie, Jieun
    • Journal of the Korean earth science society
    • /
    • v.39 no.4
    • /
    • pp.327-341
    • /
    • 2018
  • Extreme temperatures and precipitations are expected to be more frequently occurring due to the ongoing global warming over the Korean Peninsula. However, few studies have analyzed the synoptic weather patterns associated with extreme events in a warming world. Here, the atmospheric patterns related to future extreme events are first analyzed using the HadGEM3-RA regional climate model. Simulations showed that the variability of temperature and precipitation will increase in the future (2051-2100) compared to the present (1981-2005), accompanying the more frequent occurrence of extreme events. Warm advection from East China and lower latitudes, a stagnant anticyclone, and local foehn wind are responsible for the extreme temperature (daily T>$38^{\circ}C$) episodes in Korea. The extreme precipitation cases (>$500mm\;day^{-1}$) were mainly caused by mid-latitude cyclones approaching the Korean Peninsula, along with the enhanced Changma front by supplying water vapor into the East China Sea. These future synoptic-scale features are similar to those of present extreme events. Therefore, our results suggest that, in order to accurately understand future extreme events, we should consider not only the effects of anthropogenic greenhouse gases or aerosol increases, but also small-scale topographic conditions and the internal variations of climate systems.

Numerical Simulation of Nearshore Morphological Changes near Groins (突堤 周邊의 海岸地形 變化 豫測模型)

  • 김태림;김창식;박광순;심재설;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.4
    • /
    • pp.187-196
    • /
    • 1998
  • Morphological changes around the groin system in the beach are examined using a numerical model. The model consists of two parts : the hydrodynamic model which calculates the transformation of waves and currents, and the sediment transport model which determines sediment transport rates and bottom topographic changes. The numerical model is applied to single-groin and three-groin systems on a typical plane beach. The changes to the beach system due to waves and currents during 150-day simulation near the groins are calculated using sediment transport rate patterns in the domain. The sand by-passing rate patterns around groins are also evaluated.

  • PDF

Sleep Onset Period from the EEG Point of View (뇌파 영역에서 수면 발생 과정)

  • Lee, Hyun-Kwon;Park, Doo-Heum
    • Sleep Medicine and Psychophysiology
    • /
    • v.16 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • In accordance with the development of EEG and polysomnography in the field of sleep research, the sleep onset period (SOP) between wakefulness and sleep has been considered an important part for understanding the physiology of sleep. SOP in the transition from wakefulness to sleep is a gradual process integrating various viewpoints such as behavior, EEG, physiology and subjective report. Particularly, based on understanding of EEG changes during sleep, SOP has been regarded as a pattern of topographical change in specific frequency and specific state in EEG. Studies on quantitative EEG (qEEG) and event-related potential (ERP) have suggested that SOP shows the changes of functional coordination at the specific cortical areas in qEEG and the changes of regular patterns in response to environmental stimulation in ERP. The development of sleep EEG and topographic mapping of EEG is expected to integrate various viewpoints of SOP and clarify the neurophysiologic mechanism of SOP further.

  • PDF

On The Seasonal Variations Of Surface Current In The Eastern Sea Of Korea (August 1979 - April 1980)

  • Lee, Jae Chul;Chung, Whang
    • 한국해양학회지
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 1981
  • The seasonal variations of surface current patterns in the Japan Sea were drawn out from the results of drift bottle experiments, current measurements and hydrographic observations during 1979∼1980. The North Korean Cold Current(NKCC) and the East Korean Warm Current(EKWC) were common features of circulation in the eastern sea of Korea. The intrusion of NKCC along the Korean coast became strong in summer(average velocity of 47.4cm/sec off Jumunjin and 23.4cm/sec near Jugbyeon) when the Tsushima Current was strong. But there was no indication of the NKCC in November 1979. Dynamic topography(August & November 1979) and satellite picture(November 1979) seemed to show the topographic steering of EKWC beginning off Janggigab. Drift bottles arrived at the Japaness coast were affected significantly by the strong Tsushima Current in summer and by the predominant northwesterlies in winter instead of weak current.

  • PDF

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF