• Title/Summary/Keyword: Topographic Index

Search Result 148, Processing Time 0.02 seconds

On the Vegetation Zone of Mt. Paektu (백두산의 식생대에 관하여)

  • 임양재;심재국
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_2
    • /
    • pp.501-518
    • /
    • 1998
  • Mt. Paektu(2,749.6m)m the biggest mountain in Northeast Asia, located on the border line of Korea and China is characterized as an aspite with broad gentle mountain area and rich biota. however, it seems that the study of forest vegetational feature or vegetation zones in the whole area of this mountain is not yet sufficient in spite of contribution by many investigators. in this paper thermal climatic approach was carried out for the determination of vegetation zones of the mountain with the meteorological data of four stations including Cheonjj and various vegetational data. the application of Warmth Index and/or coldness Index(Kira 1977) for the determination of forest vegetation boundary was useful also here, and their boundaries largely coincided with those of thermal indicies obtained in the Korean Peninsula(Yim and Kira, 1975), including the lapse rate of air temperature along increasing elevation. However, in the mountain the boundary of vegetation zones in not clear like those of mountains in Korea. It may be due so the topographic differences between this area and the Korean Peninsula. Besides, the broad ecotones between different vegetations in this area support the vegetation continum concept rather than the unit concept, and the limit of timber line or tree line reflects various hypothesis(Steven and fox 1991). Therefore, for the explantion of vegetation zone of this area should be considered topography or soil condition, for example, as known the hierachy of ecological units (zonobiomes, orobiomes and pedobiomes, Walter, 1973).

  • PDF

Change Analysis of Forest Area and Canopy Conditions in Kaesung, North Korea Using Landsat, SPOT and KOMPSAT Data

  • Lee, Kyu-Sung;Kim, Jeong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.327-338
    • /
    • 2000
  • The forest conditions of North Korea has been a great concern since it was known to be closely related to many environmental problems of the disastrous flooding, soil erosion, and food shortage. To assess the long-term changes of forest area as well as the canopy conditions, several sources of multitemporal satellite data were applied to the study area near Kaesung. KOMPSAT-1 EOC data were overlaid with 1981 topographic map showing the boundaries of forest to assess the deforestation area. Delineation of the cleared forest was performed by both visual interpretation and unsupervised classification. For analyzing the change of forest canopy condition, multiple scenes of Landsat and SPOT data were selected. After preprocessing of the multitemporal satellite data, such as image registration and normalization, the normalized difference vegetation index (NDVI) was derived as a representation of forest canopy conditions. Although the panchromatic EOC data had radiometric limitation to classify diverse cover types, they can be effectively used t detect and delineate the deforested area. The results showed that a large portion of forest land has been cleared for the urban and agricultural uses during the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. It was also found that the canopy condition of remaining forests has not been improved for the last twenty years. Possible causes of the deforestation and the temporal pattern of canopy conditions are discussed.

Landslide Susceptibility Analysis : SVM Application of Spatial Databases Considering Clay Mineral Index Values Extracted from an ASTER Satellite Image (산사태 취약성 분석: ASTER 위성영상을 이용한 점토광물인자 추출 및 공간데이터베이스의 SVM 통계기법 적용)

  • Nam, Koung-Hoon;Lee, Moung-Jin;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • This study evaluates landslide susceptibility using statistical analysis by SVM (support vector machine) and the illite index of clay minerals extracted from ASTER(advanced spaceborne thermal emission and reflection radiometer) imagery which can be use to create mineralogical mapping. Landslide locations in the study area were identified from aerial photographs and field surveys. A GIS spatial database was compiled containing topographic maps (slope, aspect, curvature, distance to stream, and distance to road), maps of soil properties (thickness, material, topography, and drainage), maps of timber properties (diameter, age, and density), and an ASTER satellite imagery (illite index). The landslide susceptibility map was constructed through factor correlation using SVM to analyze the spatial database. Comparison of area under the curve values showed that using the illite index model provided landslide susceptibility maps that were 76.46% accurate, which compared favorably with 74.09% accuracy achieved without them.

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

Mapping the Potential Distribution of Raccoon Dog Habitats: Spatial Statistics and Optimized Deep Learning Approaches

  • Liadira Kusuma Widya;Fatemah Rezaie;Saro Lee
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.4 no.4
    • /
    • pp.159-176
    • /
    • 2023
  • The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.

Spatio-temporal Regression Analysis between Soil Moisture Measurements and Terrain Attributes at Hillslope Scale (사면에서 지형분석을 통한 토양수분 시공간 회귀분석)

  • Song, Tae-Bok;Kim, Sang-Hyun;Lee, Yunghil;Jung, Sungwon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.161-170
    • /
    • 2013
  • Spatio-temporal distribution of soil moisture was studied to improve understanding of hydrological processes at hillslope scale. Using field measurements for three designated periods during the spring, summer and autumn seasons in 2010 obtained from Beomryunsa hillslope located at the Sulmachun watershed, correlation analysis was performed between soil moisture measurements and 18 different terrain attributes (e.g., curvatures and topographic index). The results of correlation analysis demonstrated distinct seasonal variation features of soil moisture in different depths with different terrain attributes and rainfall amount. The relationship between predicted flow lines and distribution of the soil moisture provided appropriate model structures and terrain indices.

Estimation for application of the Runoff Analysis using TOPMODEL at an ungaged watershed (미계측유역에 대한 TOPMODEL의 적용성 평가)

  • Kang, Sung-Jun;Park, Young-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1458-1464
    • /
    • 2011
  • This study is on the application of TOPMODEL-topographic based hydrologic model-to the runoff analysis, The test area was the ssang-chi watershed which is mountainous catchment located in the upstream of the sumjin-gang basin and the watershed area is $126.7km^2$. The six's hourly runoff and precipitation data was selected in the 2006 ~ 2009 year. And the model parameters are calibrated using observed runoff data by Pattern Search method. The topographic index of the ssang-chi catchment was produced by digital elevation model(DEM) of 100m grid. As a results of the analysis, the parameters of model, a decay facter(m), transmissivity(T0), and the unsaturated zone delay(TD) are sensible to hydrologic response, and the simulated runoff data are in good agreement with observed runoff data.

Flood Runoff Analysis using a Distributed Rainfall Runoff Model (분포형 유출모형을 이용한 홍수유출해석)

  • Jo, Hong-Je;Jo, In-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.199-208
    • /
    • 1998
  • This study is on the application of TOPMDEL(Topographic based hydrologic model) Which is a distributed rainfall-runoff model to the flood runoff analysis. The test area was Wichun experimental catchment site which is mountainous mid-area (Dongok, 33.63$\textrm{km}^2$ and Goro, 109,725 $\textrm{km}^2$) and being operated by the Ministry of Construction and ransporation. A three-dimensional digital elevation model(DEM) map was constructed using a physiographic map(1/25,000) and GIS software, Arc/Info, was used to the analysis of geofraphic factors. The topographic index of Dongok and Goro subcatchment was similar. As a results of the analysis, the model was validated that the simulated peak flow of a flood runoff was fit to the observed data. For the analysis of the effects of grid size, Dongok subcatchment was divided into 100,120-,240 m grid and Goro subcatchment was divided into grid and 120,200,350 m grid. It was shown that the peak flow increased in proportion to the increases of the grid size, but peak times were constant regardless of the grid size in both of the watershed.

  • PDF

NDVI signature for mountain forest in accordance with topographic effects using QuickBird multi-spectral data (QuickBird 다중분광자료를 이용한 산림 지형효과의 NDVI 특성)

  • Hong, Min-Gee;Park, Soon-Chul;Kim, Gwang-Deuk;Yoon, Chang-Yeol;Kim, Choen
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2010.06a
    • /
    • pp.117-118
    • /
    • 2010
  • 위성 주사 및 촬영자료는 지표면의 반사광을 다중분광 형태로 주사하여 기록된다. 그리나 각 밴드에 기록된 지표복사체의 반사치는 피복체의 분광특성만을 나타내기 보다는 태양고도 및 방위, 그리고 지형 등에 따른 방향성 영향이 포함되기 때문에 산림의 관리 및 이용을 위한 기초자료로 식생지수를 추정할 때에 오차의 범위를 넘어 오류가 발생한다. 따라서 동일 방향성 조건의 수종에 따른 고유 정규식생지수(Normalized Difference Vegetation Index, 이하 NDVI) 값을 구하기 위해서는 지형효과에 대한 보정이 필요하다. 본 연구에서는 QuickBird 다중분광(MS)자료 기반의 NDVI값을 사면향별로 분석하여 산림 NDVI의 방향성을 증명하였다.

  • PDF

Comparison ofrock weathering propertiesfrom mountain and valley areas of homogeneous bedrock areas (동일 기반암 지역에서 산지와 곡지 암석의 풍화 특성 비교)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2016
  • This study estimates relationships between physical and chemical weathering indices of various rock types and topographical relief. Physical weathering properties such as rock strength and joint and chemical weathering indices such as the $SiO_2/Al2O_3$, CIA and WPI were analyzed from 18 rock outcrops in mountain and valley areas consisting of 9 rock types. The results indicate that the elevation and relief of topography increase physical strength of rock increases. It can be suggested that the total r(rock-mass strength rating) and R(rock rebound strength by Schmidt Hammer) are most useful indices as a quantitative weathering property factor to explain formative causes of topographical relief. The results also suggest that rock types such as sandstone, granite, gneiss and schist are most suitable to explain meaningful difference in topographical relief with the physical and chemical weathering indices.