• Title/Summary/Keyword: Topical skin delivery

Search Result 53, Processing Time 0.024 seconds

Chitosan-Based Film of Tyrothricin for Enhanced Antimicrobial Activity against Common Skin Pathogens Including Staphylococcus aureus

  • Han, Sang Duk;Sung, Hyun Jung;Lee, Ga Hyeon;Jun, Joon-Ho;Son, Miwon;Kang, Myung Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.953-958
    • /
    • 2016
  • Chitosan-based film-forming gel is regarded as a promising vehicle for topical delivery of antimicrobial agents to skin wounds, since it protects from microbial infection and the cationic polymer itself possesses antibacterial activity. In this study, possible synergistic interaction against common skin pathogens between the cationic polymer and tyrothricin (TRC), a cyclic polypeptide antibiotic, was investigated, by determining the concentration to inhibit 90% of bacterial isolates (MIC). The addition of the polysaccharide to TRC dramatically reduced the MIC values of TRC by 1/33 and 1/4 against both methicillin-resistant and methicillin-susceptible Staphylococcus aureus, respectively. The synergism of TRC and chitosan combination against both strains was demonstrated by the checkerboard method, with a fractional inhibitory concentration index below 0.5. Moreover, co-treatment of TRC and chitosan exhibited antibacterial activity against Pseudomonas aeruginosa, due to the antibacterial activity of chitosan, whereas TRC itself did not inhibit the gram-negative bacterial growth. These findings suggested that the use of chitosan-based film for topical delivery of TRC could be an alternative to improve TRC antimicrobial activity against strains that are abundant in skin wounds.

Safety Evaluation of Topical Valproate Application

  • Choi, Sun Young;Seop, Song Yi;Hyun, Moo Yeol;Yoo, Kwang Ho;Kim, Beom Joon;Kim, Myeung Nam;Cho, Jae-We
    • Toxicological Research
    • /
    • v.29 no.2
    • /
    • pp.87-90
    • /
    • 2013
  • The potential role of topical valproate (VPA) in hair regrowth has been recently suggested. However, safety reports of VPA as a topical formulation are lacking. Therefore, in the present study, we investigated whether VPA causes skin irritation in humans. We first performed a cell viability test and showed that VPA did not exhibit toxicity toward HaCaT keratinocytes, fibroblasts, and RBL-3H mast cells. We then performed clinical patch test and skin irritation test through transdermal drug delivery with the help of microneedle rollers. No significant findings were obtained in the clinical patch test. In the skin irritation test, only 1 patient showed erythema at 1 hr, but the irritation reaction faded away within a few hours. Erythema and edema were not observed at 24 hr. We concluded that VPA has minimal potential to elicit skin irritation. Therefore, we consider that VPA can safely be applied to human skin.

Iontophoresis Enhances Transdermal Delivery of Methylene Blue in Rat Skin (I): The Effect of Current Application Duration

  • Lee, Jae-Hyoung;Choi, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.6
    • /
    • pp.77-84
    • /
    • 2011
  • Purpose: The objectives of this study were to determine the enhancing effect of iontophoresis method as it transdermally deliver methylene blue (MB) using visual examination, in terms of penetration depth and tissue distribution in the skin, and to determine the effect of application duration on the efficacy of iontophoresis. Methods: Twenty-four male Sprague-Dawley rats were randomly divided into 5-, 10-, 20-, and 40-minute groups. These rats were exposed to either topical or anodic iontophoresis of 1% MB using a direct current of $0.5mA/cm^2$ for 5, 10, 20, and 40 minutes. Using cryosections of rat tissues, the penetration depth of MB was measured using light microscopy. Results: Significant differences in the penetration depth (F=54.20, p<0.001) were detected among the four groups. Post hoc comparisons of the penetration depth of MB data pooled across groups showed no significant difference between all topical application groups and 5-minute iontophoresis group, but did reveal a significant difference in the penetration depth between all topical application groups and 5-minute iontophoresis group versus 10-minute group, between the 10-minute and 20-minute group, and between the 20-minute and 40-minute iontophoresis group (p<0.05). Conclusion: The results demonstrate that iontophoresis enhances transdermal delivery of MB across stratum corneum of skin barrier by visual examination. Furthermore, the penetration depth of iontophoretic transdermal delivery of MB was dependent on the application duration. The duration of iontophoresis is one of the important factor in the efficacy of iontophoresis application.

Hydrolysis , Skin Permeation and In Vivo Whitening Effect of Kojic Acid Monostearate as an Antimelanogenic Agent (멜라닌생성억제제인 코직산 모노스테아레이트의 가수분해와 피부투과성 및 in vivo 미백효과)

  • Ha, Yong-Ho;Yu, Sung-Un;Kim, Dong-Sup;Lim, Se-Jin;Choi, Young-Wook
    • YAKHAK HOEJI
    • /
    • v.42 no.1
    • /
    • pp.39-45
    • /
    • 1998
  • Kojic acid, antimelanogenic agent, has been widely used in cosmetics to lighten the skin color. However, it has skin irritancy and instability against pH, temperature and light. To overcome these problems and optimize the molecular structure of kojic acid (KA), a prodrug, kojic acid monostearate(KMS), has been synthesized to modify the topical drug delivery in the point of sustained release of the parent drug via enzymatic hydrolysis during skin absorption. The prodrug was tested for enzymatic hydrolysis with cytosolic fraction of hairless mouse, skin. From the in vitro skin permeation study through hairless mouse skin, we found that KMS was retained in the skin and generated KA continuously by the skin esterase cleavage. In addition, topical formulations of o/w type creams and polyolprepolymer-containing cream were further tested for whitening effects using in vivo yellow skin guinea pig model.

  • PDF

Transcutaneous antigen delivery system

  • Lee, Mi-Young;Shin, Meong-Cheol;Yang, Victor C.
    • BMB Reports
    • /
    • v.46 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • Transcutaneous immunization refers to the topical application of antigens onto the epidermis. Transcutaneous immunization targeting the Langerhans cells of the skin has received much attention due to its safe, needle-free, and noninvasive antigen delivery. The skin has important immunological functions with unique roles for antigen-presenting cells such as epidermal Langerhans cells and dermal dendritic cells. In recent years, novel vaccine delivery strategies have continually been developed; however, transcutaneous immunization has not yet been fully exploited due to the penetration barrier represented by the stratum corneum, which inhibits the transport of antigens and adjuvants. Herein we review recent achievements in transcutaneous immunization, focusing on the various strategies for the enhancement of antigen delivery and vaccination efficacy.

Skin Penetration and Localization Characteristics of Lipogel Containing Ascorbyl Palmitate (아스코르빈산 팔미테이트를 함유한 리포겔의 피부 투과 및 잔류 특성)

  • Lee, Sang-Kil;Woo, Hye-Seoung;Lee, Yeon-Ah;Kwon, Yong-Nam;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.4
    • /
    • pp.225-232
    • /
    • 2001
  • The present study was carried out to observe the effect of liposome dispersed gel formulation (Lipogel) on topical delivery of ascorbyl palmitate (AsP). Neutral and negatively charged MLV liposomes containing AsP were prepared with dimyristoylphosphadtidylcholine (DMPC) and dicetyl phosphate (DCP), and dispersed to poloxamer gel matrix. In the hydrolysis study in rat's skin homogenates, AsP hydrolyzed to ascorbic acid (AsA) according to the first-order kinetics with the rate constant of $2.46{\times}10^{-2}\;min^{-1}$. In the passive skin penetration study using Franz diffusion cell, lipogel systems exhibited the greater values in the flux $(J_s)$ and the amount penetrated $(Q_p)$ compared to control hydrogels containing diethyleneglycol monoethyl ether $(Transcutol^{\circledR})$ as a solubilizing agent and a penetration enhancer for AsP. The total amount penetrated $(Q_{Total})$, which is expressed as a summation of $Q_P\;and\;Q_L$, for lipogel system was about 1.4 times higher in average than that of control hydrogel. However the amount localized in the skin $(Q_L)$ was similar in both formulations. As a result, lipogel system enhanced the skin penetration of AsP, possibly due to the increase in local concentration of AsP by preferential adsorption of liposome to the skin and the enhancing effect of phospholipid in liposome composition. Moreover it was expected that the penetrated AsP would generate AsA during skin penetration by the skin esterase. In conclusion, lipogel formulation was considered as a good candidate for topical delivery of AsP.

  • PDF

Deformable Liposomes for Topical Skin Delivery of Arbutin

  • Bian, Shengjie;Choi, Min-Koo;Lin, Hongxia;Zheng, Junmin;Chung, Suk-Jae;Shim, Chang-Koo;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.5
    • /
    • pp.299-304
    • /
    • 2006
  • The aim of this study was to investigate the effect of deformable liposomes with sodium cholate on the skin permeation and skin deposition of arbutin, a hydrophilic skin-whitening agent. Various compositions of liposomes were prepared by the extrusion method. Particle size distribution and entrapment efficiency were determined by the laser light scattering and the gel permeation chromatography, respectively. The in vitro rat skin permeation and deposition of arbutin in various skin layers were investigated using the Keshary-Chien diffusion cells at $37^{\circ}C$. The average particle size of the deformable liposomes ranged from 217.4 to 117.4 nm, depending on the composition. The entrapment efficiency was dependent on surfactant concentration and loading dose of arbutin. The permeation rate of 5% arbutin in deformable liposomes was $8.91({\pm}1.33){\mu}g/cm^2/h$, and was not significantly different from 5% arbutin aqueous solution $[9.82({\m}0.86){\mu}g/cm^2/h]$. The deposition of arbutin was $43.34({\pm}12.13)$ and $16.99({\pm}7.83){\mu}g/cm^2$ in stratum corneum layer and epidermis/dermis layer, respectively, after 12 h of permeation study. These results are consistent with several earlier studies for the localization effect of liposomal formulations in stratum corneum, and demonstrated the feasibility of the deformable liposomes as a promising carrier for the skin deposition of hydrophilic skin-whitening compounds.

Drug Release and Skin Irritancy of Poloxamer Gel Containing Kojic Acid (코지산을 함유한 폴록사머 겔 제제의 약물방출 및 피부자극성)

  • Park, Eun-Woo;Cho, Seong-Wan;Kim, Dong-Sup;Choi, Ki-Hwan;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.3
    • /
    • pp.177-183
    • /
    • 1998
  • Low toxicity, reverse thermal gelation and high drug loading capabilities suggest that poloxamer 407 gels have great potential as a topical drug delivery system. Kojic acid (KA) is an antimelanogenic agent which has been widely used in cosmetics to whiten the skin color. However, it has the drawbacks of skin irritancy due to its acidic pH. Poloxamer gels of different polymer contents were formulated to overcome the problem and compared to the cream type formulations of either w/o/w multiple emulsion cream or o/w type emulsion cream. Using Franz diffusion cells mounted with a synthetic cellulose membrane (MWCO 12,000), drug release characteristics of the formulations were evaluated by the HPLC assay of KA concentration in the receptor compartment of pH 7.4 phosphate buffered saline solutions. Drug release from w/o/w multiple emulsion cream was controlled by oil membrane, showing the apparent zero order release kinetics. The KA release from the poloxamer gels was also controlled by the gel matrix, showing that drug release increased linearly as KA contents increase, but decreased exponentially as the polymer contents increase. In the skin irritancy test, the primary irritancy index(PII) of poloxamer gel base was lower than those of multiple emulsion cream base and o/w cream. Depending on KA contents or polymer contents in the gel. PH values in poloxamer gels were ranged from 1.3 to 2.0, which are interpreted as low or negligible irritation on skin. There was a good correlation between the log value of flux in drug release and PII value in skin irritation. It was possible to conclude that the poloxamer gels containing KA might be a good candidate for an antimelanogenic topical delivery system by virtue of the controlled release of the drug and the reduced skin irritancy.

  • PDF

Nanoemulsions and Nanoparticles Employed as Delivery Vehicles for Topical Active Ingredients to Enhance Stability and Efficacy

  • Arthur Georgalas
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.307-307
    • /
    • 2003
  • Strategies to make finished products more stable and efficacious can take advantage of formulation technologies- ingredients and techniques - to improve their delivery into the skin by both enhanced penetration and delayed release. Nanometer range particles and emulsion droplets can be formed with a selection of either silicone copolyol or conventional organic surfactants and dispersion shear rates sufficient to generate stable submicron droplets. By incorporating these into systems with biomimetic liquid crystalline gel networks in either simple or multiple phase emulsions the skin delivery can be enhanced as shown in tape stripping experiments. Such systems can stabilize labile actives, such as Vitamin C and retinol, and aid delivery. Laboratories in U.S and Europe investigated actives including green tea polyphenols, salicylic acid and methyl and benzyl nicotinate.

  • PDF

Transdermal Permeation of $[{^3}H]Acyclovir$ Using Niosome (니오솜을 이용한 $[^{3}H]$아시클로버의 경피투과)

  • Park, Sae-Hae;Lee, Soon-Young;Yong, Chul-Soon
    • Journal of Pharmaceutical Investigation
    • /
    • v.28 no.1
    • /
    • pp.43-50
    • /
    • 1998
  • Niosomes are vesicles formed from synthetic non-ionic surfactants, offering an alternative to chemically unstable and expensive liposomes as a drug carrier. Non-ionic surfactant and cholesterol mixture film leads to the formation of vesicular system by hydration with sonication method. The formation of niosome was ascertained by negative staining of TEM. The entrapment efficiency of niosomal suspension was gradually increased with increasing the ratio of cholesterol to surfactant. It was found that the niosome with 6 : 4 (polyoxyethylene 2-cetyl ether: cholesterol) ratio was more stable than those with other ratios. The topical application of acyclovir(ACV) in the treatment of herpes simplex virus type 1(HSV-1) skin disease has a long history. There are an increasing number of reports, however, in which topical ACV therapy is not as effective as oral administration. Lack of efficacy with topical ACV has been hypothesized to reflect the inadequate delivery of drug to the skin. We investigated the permeation of niosome containing $[^{3}H]ACV$ in hairless mouse skin using Franz diffusion cell model. Permeation coefficient(P) of aqueous ACV was $6.7{\times}10^{-4}\;(cm/hr)$ and that of ACV in niosome was $23.4{\times}10^{-4}\;(cm/hr)$, suggesting about 3.5 times increase in the transdermal permeation.

  • PDF