• Title/Summary/Keyword: Topic modeling analysis

Search Result 690, Processing Time 0.029 seconds

Extension and Case Analysis of Topic Modeling for Inductive Social Science Research Methodology (귀납적 사회과학연구 방법론을 위한 토픽모델링의 확장 및 사례분석)

  • Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.25-45
    • /
    • 2022
  • Purpose In this paper, we propose the method to extend topic modeling techniques in order to derive data-based research hypotheses when establishing research hypotheses for social sciences, As a concept in contrast to the existing deductive hypothesis establishment methodology for the social science research, the topic modeling technique was expanded to enable the so-called inductive hypothesis establishment methodology, and an analysis case of the Seongsan Ilchulbong online review based on the proposed methodology was presented. Design/methodology/approach In this paper, an extension architecture and extension algorithm in the form of extending the existing topic modeling were proposed. The extended architecture and algorithm include data processing method based on topic ratio in document, correlation analysis and regression analysis of processed data for topics derived by existing topic modeling. In addition, in this paper, an analysis case of the online review of Seongsan Ilchulbong Peak was presented by applying the extended topic modeling algorithm. An exploratory analysis was performed on the Seongsan Ilchulbong online reviews through the basic text analysis. The data was transformed into 5-point scale to enable correlation and regression analysis based on the topic ratio in each online review. A regression analysis was performed using the derived topics as the independent variable and the review rating as the dependent variable, and hypotheses could be derived based on this, which enable the so-called inductive hypothesis establishment. Findings This paper is meaningful in that it confirmed the possibility of deriving a causal model and setting an inductive hypothesis through an extended analysis of topic modeling.

Research trends in the Korean Journal of Women Health Nursing from 2011 to 2021: a quantitative content analysis

  • Ju-Hee Nho;Sookkyoung Park
    • Women's Health Nursing
    • /
    • v.29 no.2
    • /
    • pp.128-136
    • /
    • 2023
  • Purpose: Topic modeling is a text mining technique that extracts concepts from textual data and uncovers semantic structures and potential knowledge frameworks within context. This study aimed to identify major keywords and network structures for each major topic to discern research trends in women's health nursing published in the Korean Journal of Women Health Nursing (KJWHN) using text network analysis and topic modeling. Methods: The study targeted papers with English abstracts among 373 articles published in KJWHN from January 2011 to December 2021. Text network analysis and topic modeling were employed, and the analysis consisted of five steps: (1) data collection, (2) word extraction and refinement, (3) extraction of keywords and creation of networks, (4) network centrality analysis and key topic selection, and (5) topic modeling. Results: Six major keywords, each corresponding to a topic, were extracted through topic modeling analysis: "gynecologic neoplasms," "menopausal health," "health behavior," "infertility," "women's health in transition," and "nursing education for women." Conclusion: The latent topics from the target studies primarily focused on the health of women across all age groups. Research related to women's health is evolving with changing times and warrants further progress in the future. Future research on women's health nursing should explore various topics that reflect changes in social trends, and research methods should be diversified accordingly.

A Study on the Application of Topic Modeling for the Book Report Text (독후감 텍스트의 토픽모델링 적용에 관한 탐색적 연구)

  • Lee, Soo-Sang
    • Journal of Korean Library and Information Science Society
    • /
    • v.47 no.4
    • /
    • pp.1-18
    • /
    • 2016
  • The purpose of this study is to explore application of topic modeling for topic analysis of book report. Topic modeling can be understood as one method of topic analysis. This analysis was conducted with texts in 23 book reports using LDA function of the "topicmodels" package provided by R. According to the result of topic modeling, 16 topics were extracted. The topic network was constructed by the relation between the topics and keywords, and the book report network was constructed by the relation between book report cases and topics. Next, Centrality analysis was conducted targeting the topic network and book report network. The result of this study is following these. First, 16 topics are shown as network which has one component. In other words, 16 topics are interrelated. Second, book report was divided into 2 groups, book reports with high centrality and book reports with low centrality. The former group has similarities with others, the latter group has differences with others in aspect of the topics of book reports. The result of topic modeling is useful to identify book reports' topics combining with network analysis.

Topic Analysis of Scholarly Communication Research

  • Ji, Hyun;Cha, Mikyeong
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.2
    • /
    • pp.47-65
    • /
    • 2021
  • This study aims to identify specific topics, trends, and structural characteristics of scholarly communication research, based on 1,435 articles published from 1970 to 2018 in the Scopus database through Latent Dirichlet Allocation topic modeling, serial analysis, and network analysis. Topic modeling, time series analysis, and network analysis were used to analyze specific topics, trends, and structures, respectively. The results were summarized into three sets as follows. First, the specific topics of scholarly communication research were nineteen in number, including research resource management and research data, and their research proportion is even. Second, as a result of the time series analysis, there are three upward trending topics: Topic 6: Open Access Publishing, Topic 7: Green Open Access, Topic 19: Informal Communication, and two downward trending topics: Topic 11: Researcher Network and Topic 12: Electronic Journal. Third, the network analysis results indicated that high mean profile association topics were related to the institution, and topics with high triangle betweenness centrality, such as Topic 14: Research Resource Management, shared the citation context. Also, through cluster analysis using parallel nearest neighbor clustering, six clusters connected with different concepts were identified.

Topic Modeling and Sentiment Analysis of Twitter Discussions on COVID-19 from Spatial and Temporal Perspectives

  • AlAgha, Iyad
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.1
    • /
    • pp.35-53
    • /
    • 2021
  • The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.

Research trends in dental hygiene based on topic modeling and semantic network analysis

  • Yun-Jeong Kim;Jae-Hee Roh
    • Journal of Korean society of Dental Hygiene
    • /
    • v.22 no.6
    • /
    • pp.495-502
    • /
    • 2022
  • Objectives: The purpose of this study was to analyze research trends in dental hygiene using topic modeling and semantic network analysis. Methods: A total of 261 published studies were collected 686 key words from the Research Information Sharing Service (RISS) by 2019-2021. Topic modeling and semantic network analysis were performed using Textom. Results: The most frequently and frequency-inverse document frequently key words were 'dental hygienist', 'oral health', 'elderly', 'periodontal disease', 'dental hygiene'. N-gram of key words show that 'dental hygienist-emotional labor', 'dental hygienist-elderly', 'dental hygienist-job performance', 'oral health-quality of life', 'oral health-periodontal disease' etc. were frequently. Key words with high degree centrality were 'dental hygienist (0.317)', 'oral health (0.239)', 'elderly (0.127)', 'job satisfaction (0.057)', 'dental care (0.049)'. Extracted topics were 5 by topic modeling. Conclusions: Results from the current study could be available to know research trends in dental hygiene and it is necessary to improve more detailed and qualitative analysis in follow-up study.

Analysis of outdoor-wear research trends using topic modeling (토픽 모델링을 이용한 아웃도어웨어 연구 동향 분석)

  • Kihyang Han;Minsun Lee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.1
    • /
    • pp.53-69
    • /
    • 2023
  • This study aims to analyze research trends regarding outdoor wear. For this purpose, the data-collection period was limited to January 2002-October 2022, and the collection consisted of titles of papers, academic names, abstracts, and publication years from the Research Information Sharing Service (RISS). Frequency analysis was conducted on 227 papers in total to check academic journals and annual trends, and LDA topic-modeling analysis was conducted using 20,964 tokens. Data pre-processing was performed prior to topic-modeling analysis; after that, topic-modeling analysis, core topic derivation, and visualization were performed using a Python algorithm. A total of eight topics were obtained from the comprehensive analysis: experiential marketing and lifestyle, property and evaluation of outdoor wear, design and patterns of outdoor wear, outdoor-wear purchase behavior, color, designs and materials of outdoor wear, promotional strategies for outdoor wear, purchase intention and satisfaction depending on the brand image of outdoor wear, differences in outdoor wear preferences by consumer group. The results of topic-modeling analysis revealed that the topic, which includes a study on the design and material of outdoor wear and the pattern of jackets related to the overall shape, was the highest at 30.9% of the total topics. The next highest topic was also the design and color of outdoor wear, indicating that design-related research was the main research topic in outdoor wear research. It is hoped that analyzing outdoor wear research will help comprehend the research conducted thus far and reveal future directions.

R&D Perspective Social Issue Packaging using Text Analysis

  • Wong, William Xiu Shun;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.15 no.3
    • /
    • pp.71-95
    • /
    • 2016
  • In recent years, text mining has been used to extract meaningful insights from the large volume of unstructured text data sets of various domains. As one of the most representative text mining applications, topic modeling has been widely used to extract main topics in the form of a set of keywords extracted from a large collection of documents. In general, topic modeling is performed according to the weighted frequency of words in a document corpus. However, general topic modeling cannot discover the relation between documents if the documents share only a few terms, although the documents are in fact strongly related from a particular perspective. For instance, a document about "sexual offense" and another document about "silver industry for aged persons" might not be classified into the same topic because they may not share many key terms. However, these two documents can be strongly related from the R&D perspective because some technologies, such as "RF Tag," "CCTV," and "Heart Rate Sensor," are core components of both "sexual offense" and "silver industry." Thus, in this study, we attempted to discover the differences between the results of general topic modeling and R&D perspective topic modeling. Furthermore, we package social issues from the R&D perspective and present a prototype system, which provides a package of news articles for each R&D issue. Finally, we analyze the quality of R&D perspective topic modeling and provide the results of inter- and intra-topic analysis.

Topic Modeling Analysis Comparison for Research Topic in Korean Society of Industrial and Systems Engineering: Concentrated on Research Papers from 1978~1999 (한국산업경영시스템학회지 연구 주제의 토픽모델링 분석 비교: 1978년~99년 논문을 중심으로)

  • Park, Dong Joon;Oh, Hyung Sool;Kim, Ho Gyun;Yoon, Min
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.113-127
    • /
    • 2021
  • Topic modeling has been receiving much attention in academic disciplines in recent years. Topic modeling is one of the applications in machine learning and natural language processing. It is a statistical modeling procedure to discover topics in the collection of documents. Recently, there have been many attempts to find out topics in diverse fields of academic research. Although the first Department of Industrial Engineering (I.E.) was established in Hanyang university in 1958, Korean Institute of Industrial Engineers (KIIE) which is truly the most academic society was first founded to contribute to research for I.E. and promote industrial techniques in 1974. Korean Society of Industrial and Systems Engineering (KSIE) was established four years later. However, the research topics for KSIE journal have not been deeply examined up until now. Using topic modeling algorithms, we cautiously aim to detect the research topics of KSIE journal for the first half of the society history, from 1978 to 1999. We made use of titles and abstracts in research papers to find out topics in KSIE journal by conducting four algorithms, LSA, HDP, LDA, and LDA Mallet. Topic analysis results obtained by the algorithms were compared. We tried to show the whole procedure of topic analysis in detail for further practical use in future. We employed visualization techniques by using analysis result obtained from LDA. As a result of thorough analysis of topic modeling, eight major research topics were discovered including Production/Logistics/Inventory, Reliability, Quality, Probability/Statistics, Management Engineering/Industry, Engineering Economy, Human Factor/Safety/Computer/Information Technology, and Heuristics/Optimization.

Trend Analysis of Data Mining Research Using Topic Network Analysis

  • Kim, Hyon Hee;Rhee, Hey Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.141-148
    • /
    • 2016
  • In this paper, we propose a topic network analysis approach which integrates topic modeling and social network analysis. We collected 2,039 scientific papers from five top journals in the field of data mining published from 1996 to 2015, and analyzed them with the proposed approach. To identify topic trends, time-series analysis of topic network is performed based on 4 intervals. Our experimental results show centralization of the topic network has the highest score from 1996 to 2000, and decreases for next 5 years and increases again. For last 5 years, centralization of the degree centrality increases, while centralization of the betweenness centrality and closeness centrality decreases again. Also, clustering is identified as the most interrelated topic among other topics. Topics with the highest degree centrality evolves clustering, web applications, clustering and dimensionality reduction according to time. Our approach extracts the interrelationships of topics, which cannot be detected with conventional topic modeling approaches, and provides topical trends of data mining research fields.