• 제목/요약/키워드: Topic coherence

검색결과 25건 처리시간 0.024초

트윗의 타임 시퀀스를 활용한 DTM 분석 : 2019 남북미정상회동 이벤트를 중심으로 (Tweets analysis using a Dynamic Topic Modeling : Focusing on the 2019 Koreas-US DMZ Summit)

  • 고은지;최선영
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.308-313
    • /
    • 2021
  • 이 연구는 2019년 판문점 남북미 정상 회동 트윗을 타임 시퀀스와 함께 수집하여 시퀀셜 토픽모델링인 DTM으로 분석하였다. 트위터와 같은 마이크로 블로깅 서비스는 단일 이벤트에 뉴스와 오피니언이 혼재된 비정형 데이터가 대규모로 동시에 발생하고, 정보와 반응이 동일 메시지 형식으로 생산된다. 때문에 토픽 트렌드를 파악하려면 시퀀셜 데이터의 특성을 반영하여 패턴 분석을 해야 맥락적 의미를 알 수 있다. 토픽 일관성 점수를 구해 LDA를 평가한 후 DTM을 계산한 결과, 뉴스 보도와 오피니언 관련 토픽 30개가 도출되었고, 각 토픽과 키워드는 시간에 따라 발생 확률이 역동적으로 진화하고 있었다. 결론적으로 DTM은 특정 이벤트에 대한 사회 전반에 나타난 통합적 토픽 추이를 시간에 따라 분석하는데 적합한 모델임을 밝혔다.

응집장치가 과학텍스트의 기억과 이해에 미치는 효과 (The Effect of Cohesive Devices on Memory and Understanding of Scientific Text)

  • 김세영;한광희;조숙환
    • 인지과학
    • /
    • 제13권2호
    • /
    • pp.1-13
    • /
    • 2002
  • 본 논문에서는 표층 언어 표현의 응집성 (coherence)이 과학 텍스트의 이해에 어떤 효과를 주는지에 대해 검토하였다 이 연구는 응집성의 강도가 과학 텍스트 이해의 정도와 관계가 있는 지 검토하고. 텍스트의 이해가 지엽적 응집성과 총체적 응집성의 관점으로 어떻게 설명될 수 있는지, 또는 다른 요인과 어떠한 관계가 있는지 조사하였다. 이해에 대한 응집성 강도의 효과를 알아보기 위하여 원인, 반복, 직시사 (deixis). 정박 (anchoring)등의 응집장치 (cohesive devices)를 이용하여 텍스트의 응집성 강도를 조작하였으며. 이에 대한 오프라인 처리 과제를 실시하였다 실험 결과, 응집성이 강한 텍스트가 보다 용이하게 이해된 것으로 나타났다 단락별로 분석된 회상 및 재인 검사의 결과에서는 응집장치의 종류에 따른 응집성 효과가 선택적으로 나타났다 이는 응집장치의 지엽적 효과가 일관적이지 않다는 것을 의미하는 것으로 보인다. 한편 텍스트의 주제가 얼마나 긴밀하게 연결되었는지 분석한 결과. 주제 연결 (topic continuity)의 긴밀성 정도가 텍스트 이해와 관련되어 있음을 발견하게 되었다 이러한 결과는 텍스트 이해가 지엽적 응집성의 선택적 효과에 의해 구축되는 상향적 (bottom-up) 과정뿐만 아니라. 텍스트 전체를 지배하는 하향적 (top-down) 과정에 의해 촉진됨을 암시한다

  • PDF

토픽 식별성 향상을 위한 키워드 재구성 기법 (Keyword Reorganization Techniques for Improving the Identifiability of Topics)

  • 윤여일;김남규
    • 한국IT서비스학회지
    • /
    • 제18권4호
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

Topic Modeling and Sentiment Analysis of Twitter Discussions on COVID-19 from Spatial and Temporal Perspectives

  • AlAgha, Iyad
    • Journal of Information Science Theory and Practice
    • /
    • 제9권1호
    • /
    • pp.35-53
    • /
    • 2021
  • The study reported in this paper aimed to evaluate the topics and opinions of COVID-19 discussion found on Twitter. It performed topic modeling and sentiment analysis of tweets posted during the COVID-19 outbreak, and compared these results over space and time. In addition, by covering a more recent and a longer period of the pandemic timeline, several patterns not previously reported in the literature were revealed. Author-pooled Latent Dirichlet Allocation (LDA) was used to generate twenty topics that discuss different aspects related to the pandemic. Time-series analysis of the distribution of tweets over topics was performed to explore how the discussion on each topic changed over time, and the potential reasons behind the change. In addition, spatial analysis of topics was performed by comparing the percentage of tweets in each topic among top tweeting countries. Afterward, sentiment analysis of tweets was performed at both temporal and spatial levels. Our intention was to analyze how the sentiment differs between countries and in response to certain events. The performance of the topic model was assessed by being compared with other alternative topic modeling techniques. The topic coherence was measured for the different techniques while changing the number of topics. Results showed that the pooling by author before performing LDA significantly improved the produced topic models.

Analyzing Customer Experience in Hotel Services Using Topic Modeling

  • Nguyen, Van-Ho;Ho, Thanh
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.586-598
    • /
    • 2021
  • Nowadays, users' reviews and feedback on e-commerce sites stored in text create a huge source of information for analyzing customers' experience with goods and services provided by a business. In other words, collecting and analyzing this information is necessary to better understand customer needs. In this study, we first collected a corpus with 99,322 customers' comments and opinions in English. From this corpus we chose the best number of topics (K) using Perplexity and Coherence Score measurements as the input parameters for the model. Finally, we conducted an experiment using the latent Dirichlet allocation (LDA) topic model with K coefficients to explore the topic. The model results found hidden topics and keyword sets with high probability that are interesting to users. The application of empirical results from the model will support decision-making to help businesses improve products and services as well as business management and development in the field of hotel services.

무한 사전 온라인 LDA 토픽 모델에서 의미적 연관성을 사용한 토픽 확장 (Topic Expansion based on Infinite Vocabulary Online LDA Topic Model using Semantic Correlation Information)

  • 곽창욱;김선중;박성배;김권양
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권9호
    • /
    • pp.461-466
    • /
    • 2016
  • 토픽 확장은 학습된 토픽의 질을 향상시키기 위해 추가적인 외부 데이터를 반영하여 점진적으로 토픽을 확장하는 방법이다. 기존의 온라인 학습 토픽 모델에서는 외부 데이터를 확장에 사용될 경우, 새로운 단어가 기존의 학습된 모델에 반영되지 않는다는 문제가 있었다. 본 논문에서는 무한 사전 온라인 LDA 토픽 모델을 이용하여 외부 데이터를 반영한 토픽 모델 확장 방법을 연구하였다. 토픽 확장 학습에서는 기존에 형성된 토픽과 추가된 외부 데이터의 단어와 유사도를 반영하여 토픽을 확장한다. 실험에서는 기존의 토픽 확장 모델들과 비교하였다. 비교 결과, 제안한 방법에서 외부 연관 문서 단어를 토픽 모델에 반영하기 때문에 대본 토픽이 다루지 못한 정보들을 토픽에 포함할 수 있었다. 또한, 일관성 평가에서도 비교 모델보다 뛰어난 성능을 나타냈다.

Exploring Secondary Science Teacher Preparation Program and Suggesting its Development Direction: A Case of USA and Korea

  • Park, Young-Shin;Lee, Ki-Young;Morrell, Patricia D.;Schepige, Adele
    • 한국지구과학회지
    • /
    • 제38권5호
    • /
    • pp.378-392
    • /
    • 2017
  • Teacher quality is a topic of international concern, as it impacts student learning and teacher preparation. This study compared the undergraduate secondary science teacher preparation programs from two universities in Korea with those of Oregon, USA. We examined the programs' structural curricular coherence, conceptual curricular coherence, and curricular balance. Structural curricular coherence was determined by examining the overarching goals of the institutions' programs, the organization of the programs of study in terms of meeting those goals, and outside bodies of evidence. All universities were in structural coherence for various reasons. Conceptual curricular coherence was determined by examining students' perceptions of the connection between their preparation and their clinical practice. In case of Korea, most students from both universities were not satisfied with their practical preparation. In the US, the students from both institutions felt well prepared to transition to inservice teaching. To determine curricular balance, we examined the institutions' preparation programs looking at the credit hours taken in the four main areas of the teacher knowledge base: GPK (General Pedagogical Knowledge), SMK (Subject Matter Knowledge), PCK (Pedagogical Content Knowledge), and CK (Contextual Knowledge). The total credit hours taken in each category was very similar by country but the application and field component in the USA was far greater than those of Korea where the focus was heavily on SMK and PCK. The main reason for these may be the nations' licensing and employment processes.

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

Comparing Social Media and News Articles on Climate Change: Different Viewpoints Revealed

  • Kang Nyeon Lee;Haein Lee;Jang Hyun Kim;Youngsang Kim;Seon Hong Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2966-2986
    • /
    • 2023
  • Climate change is a constant threat to human life, and it is important to understand the public perception of this issue. Previous studies examining climate change have been based on limited survey data. In this study, the authors used big data such as news articles and social media data, within which the authors selected specific keywords related to climate change. Using these natural language data, topic modeling was performed for discourse analysis regarding climate change based on various topics. In addition, before applying topic modeling, sentiment analysis was adjusted to discover the differences between discourses on climate change. Through this approach, discourses of positive and negative tendencies were classified. As a result, it was possible to identify the tendency of each document by extracting key words for the classified discourse. This study aims to prove that topic modeling is a useful methodology for exploring discourse on platforms with big data. Moreover, the reliability of the study was increased by performing topic modeling in consideration of objective indicators (i.e., coherence score, perplexity). Theoretically, based on the social amplification of risk framework (SARF), this study demonstrates that the diffusion of the agenda of climate change in public news media leads to personal anxiety and fear on social media.

LDA 토픽 모델링을 활용한 SNS 분석 (SNS Analysis Using LDA Topic Modeling)

  • 장민수;임선영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.402-403
    • /
    • 2023
  • 본 연구의 목적은 LDA 토픽 모델링을 활용하여 한국어 SNS데이터에 분석을 통해 우리나라의 여가활동, 일과 직업, 주거와 생활의 동향을 살펴보는 것이다. AI Hub에서 제공하는 한국어 SNS데이터를 수집하고 형태소 분석, 전처리 과정을 거친 후 coherence score을 토대로 최적의 토픽 수를 결정하여 토픽을 추출하였다. 도출한 트렌드를 바탕으로 경영, 마케팅 분야에 미치는 영향을 예측할 수 있을 것으로 기대한다.