• 제목/요약/키워드: Topic Detection

검색결과 180건 처리시간 0.03초

High rate diffusion-scale approximation for counters with extendable dead time

  • Dubi, Chen;Atar, Rami
    • Nuclear Engineering and Technology
    • /
    • 제51권6호
    • /
    • pp.1616-1625
    • /
    • 2019
  • Measuring occurrence times of random events, aimed to determine the statistical properties of the governing stochastic process, is a basic topic in science and engineering, and has been the subject of numerous mathematical modeling approaches. Often, true statistical properties deviate from measured properties due to the so called dead time phenomenon, where for a certain time period following detection, the detection system is not operational. Understanding the dead time effect is especially important in radiation measurements, often characterized by high count rates and a non-reducible detector dead time (originating in the physics of particle detection). The effect of dead time can be interpreted as a suitable rarefied sequence of the original time sequence. This paper provides a limit theorem for a high rate (diffusion-scale) counter with extendable (Type II) dead time, where the underlying counting process is a renewal process with finite second moment for the inter-event distribution. The results are very general, in the sense that they refer to a general inter arrival time and a random dead time with general distribution. Following the theoretical results, we will demonstrate the applicability of the results in three applications: serially connected components, multiplicity counting and measurements of aerosol spatial distribution.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제37권1호
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

The Game Selection Model for the Payoff Strategy Optimization of Mobile CrowdSensing Task

  • Zhao, Guosheng;Liu, Dongmei;Wang, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1426-1447
    • /
    • 2021
  • The payoff game between task publishers and users in the mobile crowdsensing environment is a hot topic of research. A optimal payoff selection model based on stochastic evolutionary game is proposed. Firstly, the process of payoff optimization selection is modeled as a task publisher-user stochastic evolutionary game model. Secondly, the low-quality data is identified by the data quality evaluation algorithm, which improves the fitness of perceptual task matching target users, so that task publishers and users can obtain the optimal payoff at the current moment. Finally, by solving the stability strategy and analyzing the stability of the model, the optimal payoff strategy is obtained under different intensity of random interference and different initial state. The simulation results show that, in the aspect of data quality evaluation, compared with BP detection method and SVM detection method, the accuracy of anomaly data detection of the proposed model is improved by 8.1% and 0.5% respectively, and the accuracy of data classification is improved by 59.2% and 32.2% respectively. In the aspect of the optimal payoff strategy selection, it is verified that the proposed model can reasonably select the payoff strategy.

Deep Learning Based Rumor Detection for Arabic Micro-Text

  • Alharbi, Shada;Alyoubi, Khaled;Alotaibi, Fahd
    • International Journal of Computer Science & Network Security
    • /
    • 제21권11호
    • /
    • pp.73-80
    • /
    • 2021
  • Nowadays microblogs have become the most popular platforms to obtain and spread information. Twitter is one of the most used platforms to share everyday life event. However, rumors and misinformation on Arabic social media platforms has become pervasive which can create inestimable harm to society. Therefore, it is imperative to tackle and study this issue to distinguish the verified information from the unverified ones. There is an increasing interest in rumor detection on microblogs recently, however, it is mostly applied on English language while the work on Arabic language is still ongoing research topic and need more efforts. In this paper, we propose a combined Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to detect rumors on Twitter dataset. Various experiments were conducted to choose the best hyper-parameters tuning to achieve the best results. Moreover, different neural network models are used to evaluate performance and compare results. Experiments show that the CNN-LSTM model achieved the best accuracy 0.95 and an F1-score of 0.94 which outperform the state-of-the-art methods.

Implementation of Multiple Sensor Data Fusion Algorithm for Fire Detection System

  • Park, Jung Kyu;Nam, Kihun
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권7호
    • /
    • pp.9-16
    • /
    • 2020
  • 본 연구에서는 다중 센서를 사용하여 화재 감지를 수행하는 알고리즘을 제안하고 시스템을 구현하였다. 제안하는 알고리즘은 다중 센서의 데이터를 기반으로 규칙을 적용하여 화재를 판정한다. 화재 발생은 약 3~5분의 시간이 걸리며 이 시간은 화재 감지의 최적 시간이다. 이는 잠재적 화재 발생을 적시에 식별하는 것이 화재 관리에 중요하다는 것을 의미한다. 국내의 경우 화재 국가 법령에 따라 대부분 건물에 화재경보기 설비를 장착하고 있다. 그러나 현재 사용하는 화재 감지 장치는 연기나 열을 감지하는 하나의 센서에 의존하기 때문에 허위 경보에 매우 취약하다. 최근에는 IoT의 기술 발달로 화재 감지기에 여러 개의 센서를 통합할 수 있다. 또한, 화재 감지기는 다른 물체와 통신을 할 수 있으며 프로그램된 작업을 수행할 수 있는 스마트 기술이 개발되었다. 제작된 프로토타입은 10건의 실제 실험을 기준으로 90%의 성공률과 10%의 거짓 경보율을 기록했다.

사건중심 뉴스기사 자동요약을 위한 사건탐지 기법에 관한 연구 (A Study on an Effective Event Detection Method for Event-Focused News Summarization)

  • 정영미;김용광
    • 정보관리학회지
    • /
    • 제25권4호
    • /
    • pp.227-243
    • /
    • 2008
  • 이 연구에서는 사건중심 뉴스기사 요약문을 자동생성하기 위해 뉴스기사들을 SVM 분류기를 이용하여 사건 주제범주로 먼저 분류한 후, 각 주제범주 내에서 싱글패스 클러스터링 알고리즘을 통해 특정한 사건 관련 기사들을 탐지하는 기법을 제안하였다. 사건탐지 성능을 높이기 위해 고유명사에 가중치를 부여하고, 뉴스의 발생시간을 고려한 시간벌점함수를 제안하였다. 또한 일정 규모 이상의 클러스터를 분할하여 적절한 크기의 사건 클러스터를 생성하도록 수정된 싱글패스 알고리즘을 사용하였다. 이 연구에서 제안한 사건탐지 기법의 성능은 단순 싱글패스 클러스터링 기법에 비해 정확률, 재현율, F-척도에서 각각 37.1%, 0.1%, 35.4%의 성능 향상률을 보였고, 오보율과 탐지비용에서는 각각 74.7%, 11.3%의 향상률을 나타냈다.

ISAR 영상 기반 소형 드론 탐지 구현 (Implementation of Radar Drone Detection Based on ISAR Technique)

  • 이기웅;송경민;송정환;정철호;이우경;이명진;송용규
    • 한국전자파학회논문지
    • /
    • 제28권2호
    • /
    • pp.159-162
    • /
    • 2017
  • 최근 드론은 다양한 분야에서 활용되고 있지만, 테러, 범죄, 보안 등에 악용될 우려가 높아지고 있다. 해외에서는 안티 드론 기술들에 대한 연구결과들이 수차례 발표되었으며, 국내에서도 레이다를 활용한 드론 탐지 기술에 관심이 증가하고 있다. 하지만 상용 드론은 작은 크기와 낮은 반사도로 인해 탐지가 어렵다고 알려져 있어 이를 극복하기 위한 기술개발이 필요되고 있다. 본 논문은 실제로 진행된 ISAR 기반의 드론 탐지 실험결과를 제시한다. 지상에 설치된 레이다를 통해 원거리에서 비행하는 드론의 ISAR 원시데이터를 획득하였으며, 영상형성 기법을 적용하여 탐지 성능이 향상됨을 보인다.

자동 트렌드 탐지를 위한 속성의 정의 및 트렌드 순위 결정 방법 (Trend Properties and a Ranking Method for Automatic Trend Analysis)

  • 오흥선;최윤정;신욱현;정윤재;맹성현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권3호
    • /
    • pp.236-243
    • /
    • 2009
  • 특허, 뉴스, 블로그와 같이 시간 정보가 있는 문서들로부터의 자동적인 트렌드 분석(trend analysis)은 토픽탐지 및 추적 기술(TDT: Topic Detection and Tracking)과 더불어 중요한 연구 분야로 대두되고 있다. 과거 연구들은 대부분 트렌드과 관련된 단어의 출현 빈도 정보를 이용하여 주어진 개념의 중요도를 측정하고 이 개념의 시간에 따른 트렌드 라인을 보여주는 것에 초점을 맞췄다. 신출 트렌드 (emerging trend)를 탐지하기 위해서는 주어진 개념의 출현 빈도수 변화와 같은 간단한 방법이나 학습 데이타와 비교하여 차이를 탐지하여 제시하는 방법이 사용되었다. 그러나 여러 트렌드 중에서 특징적인 트렌드를 찾아서 사용자에게 제공하기 위해서는 트렌드 순위 결정 함수가 필요하다. 본 논문은 트렌드의 다양한 측면을 정량화하기 위하여 출현 빈도로 구성된 트렌드 곡선으로부터 네 가지 속성 (변동성, 지속성, 안정성, 누적량) 을 정의하고 이를 활용한 트렌드 순위 결정 방법을 제안한다. 일련의 실험을 통하여 각 속성의 유용성을 검증하고 속성들의 조합이 순위 결정에 어떤 영향을 미치는지 분석하였다. 실험결과로부터 네 가지 속성을 모두 조합할 경우 특징적인 트렌드 탐지에 더욱 기여하는 것을 알 수 있다.

텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안 (Detecting Spam Data for Securing the Reliability of Text Analysis)

  • 현윤진;김남규
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.493-504
    • /
    • 2017
  • 최근 뉴스, 블로그, 소셜미디어 등을 통해 방대한 양의 비정형 텍스트 데이터가 쏟아져 나오고 있다. 이러한 비정형 텍스트 데이터는 풍부한 정보 및 의견을 거의 실시간으로 반영하고 있다는 측면에서 그 활용도가 매우 높아, 학계는 물론 산업계에서도 분석 수요가 증가하고 있다. 하지만 텍스트 데이터의 유용성이 증가함과 동시에 이러한 텍스트 데이터를 왜곡하여 특정 목적을 달성하려는 시도도 늘어나고 있다. 이러한 스팸성 텍스트 데이터의 증가는 방대한 정보 가운데 필요한 정보를 획득하는 일을 더욱 어렵게 만드는 것은 물론, 정보 자체 및 정보 제공 매체에 대한 신뢰도를 떨어뜨리는 현상을 초래하게 된다. 따라서 원본 데이터로부터 스팸성 데이터를 식별하여 제거함으로써, 정보의 신뢰성 및 분석 결과의 품질을 제고하기 위한 노력이 반드시 필요하다. 이러한 목적으로 스팸을 식별하기 위한 연구가 오피니언 스팸 탐지, 스팸 이메일 검출, 웹 스팸 탐지 등의 분야에서 매우 활발하게 수행되었다. 본 연구에서는 스팸 식별을 위한 기존의 연구 동향을 자세히 소개하고, 블로그 정보의 신뢰성 향상을 위한 방안 중 하나로 블로그의 스팸 태그를 식별하기 위한 방안을 제안한다.

딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석 (A Deep Learning-based Depression Trend Analysis of Korean on Social Media)

  • 박서정;이수빈;김우정;송민
    • 정보관리학회지
    • /
    • 제39권1호
    • /
    • pp.91-117
    • /
    • 2022
  • 국내를 비롯하여 전 세계적으로 우울증 환자 수가 매년 증가하는 추세이다. 그러나 대다수의 정신질환 환자들은 자신이 질병을 앓고 있다는 사실을 인식하지 못해서 적절한 치료가 이루어지지 않고 있다. 우울 증상이 방치되면 자살과 불안, 기타 심리적인 문제로 발전될 수 있기에 우울증의 조기 발견과 치료는 정신건강 증진에 있어 매우 중요하다. 이러한 문제점을 개선하기 위해 본 연구에서는 한국어 소셜 미디어 텍스트를 활용한 딥러닝 기반의 우울 경향 모델을 제시하였다. 네이버 지식인, 네이버 블로그, 하이닥, 트위터에서 데이터수집을 한 뒤 DSM-5 주요 우울 장애 진단 기준을 활용하여 우울 증상 개수에 따라 클래스를 구분하여 주석을 달았다. 이후 구축한 말뭉치의 클래스 별 특성을 살펴보고자 TF-IDF 분석과 동시 출현 단어 분석을 실시하였다. 또한, 다양한 텍스트 특징을 활용하여 우울 경향 분류 모델을 생성하기 위해 단어 임베딩과 사전 기반 감성 분석, LDA 토픽 모델링을 수행하였다. 이를 통해 문헌 별로 임베딩된 텍스트와 감성 점수, 토픽 번호를 산출하여 텍스트 특징으로 사용하였다. 그 결과 임베딩된 텍스트에 문서의 감성 점수와 토픽을 모두 결합하여 KorBERT 알고리즘을 기반으로 우울 경향을 분류하였을 때 가장 높은 정확률인 83.28%를 달성하는 것을 확인하였다. 본 연구는 다양한 텍스트 특징을 활용하여 보다 성능이 개선된 한국어 우울 경향 분류 모델을 구축함에 따라, 한국 온라인 커뮤니티 이용자 중 잠재적인 우울증 환자를 조기에 발견해 빠른 치료 및 예방이 가능하도록 하여 한국 사회의 정신건강 증진에 도움을 줄 수 있는 기반을 마련했다는 점에서 의의를 지닌다.