인터넷 및 모바일 기술의 발달과 소셜미디어의 확산으로 인해 다량의 정보들이 온라인 상에서 생성, 유통되고 있다. 이중에는 대중에게 도움이 되는 유익한 정보들도 있지만, 역기능을 하는 이른바 가짜뉴스들도 함께 유통되고 있다. 지난 2020년 코로나19의 전세계적인 확산 이후, 온라인 상에는 이와 관련한 수많은 가짜뉴스들이 유통되었다. 다른 가짜뉴스들과 달리 코로나19와 관련된 가짜뉴스는 사람들의 건강, 나아가 생명까지 위협할 수 있다는 점에서 그 심각성이 매우 크다고 할 수 있다. 때문에 코로나19와 관련한 가짜뉴스를 자동으로 탐지하고, 이를 예방하는 지능형 기술은 사회적 건강도를 제고하는데 매우 의미 있는 연구주제라 할 수 있다. 이러한 배경에서 본 연구에서는 코로나19 관련 가짜뉴스 탐지를 효과적으로 수행하기 위해 그래프 임베딩 방법 중 하나인 Graph2vec을 활용한 방법을 제안한다. 가짜뉴스 탐지에 대한 주류 방법은 뉴스 콘텐츠 기반 즉, 텍스트에 대한 특징 분석으로 진행되었으나 본 연구에서는 사회적 참여 네트워크 내에서의 정보 전달 관계를 추가로 활용함으로써 보다 효과적으로 코로나19와 관련된 가짜뉴스를 탐지할 수 있었으며 성능 측면에서 정확도 향상을 확인할 수 있었다.
4차 산업혁명의 도래와 함께 다양한 기술이 주목을 받고 있다. 4차 산업혁명과 관련된 기술로는 IoT(Internet of Things), 빅데이터, 인공지능, VR(Virtual Reality), 3D 프린터, 로봇공학 등이 있으며 이러한 기술은 종종 융합된다. 특히 로봇 분야는 빅데이터, 인공지능, VR, 디지털 트윈과 같은 기술과 결합할 것으로 기대된다. 이에 따라 로봇을 활용한 연구가 다수 진행되고 있으며 유통, 공항, 호텔, 레스토랑, 교통 분야 등에 적용되고 있다. 이러한 상황에서 인간-로봇 상호작용에 대한 연구가 주목을 받고 있지만 아직 만족할 만한 수준에는 이르지 못하고 있다. 하지만 완벽한 의사소통이 가능한 로봇에 대한 연구가 꾸준히 이루어지고 있고 이는 인간의 감정노동을 대신할 수 있을 것으로 기대된다. 따라서 현재의 인간-로봇 상호작용 기술을 비즈니스에 적용할 수 있는지에 대한 논의가 필요하다. 이를 위해 본 연구는 첫째, 인간로봇 상호작용 기술의 동향을 살펴본다. 둘째, LDA(Latent Dirichlet Allocation) 토픽모델링과 BERTopic 토픽모델링 방법을 비교한다. 연구 결과, 1992년~2002년 간의 연구에서는 인간-로봇 상호작용에 대한 개념과 기초적인 상호작용에 대해 논의되고 있었다. 2003년~2012년에는 사회적 표현에 대한 연구가 많이 진행되었으며 얼굴검출, 인식 등과 같이 판단과 관련된 연구도 수행되었다. 2013년~2022년에는 노인 간호, 교육, 자폐 치료와 같은 서비스 토픽들이 등장하였으며, 사회적 표현에 대한 연구가 지속되었다. 그러나 아직까지 비즈니스에 적용할 수 있는 수준에는 이르지 못한 것으로 보인다. 그리고 LDA토픽모델링과 BERTopic 토픽모델링 방법을 비교한 결과 LDA에 비해 BERTopic이 더 우수한 방법임을 확인하였다.
Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.
치매(dementia)는 고령화와 함께 유병 인구가 지속적으로 늘어남에 따라 사회적 부담이 가중되고 있는 만큼 조기 진단의 필요성이 강조되고 있다. 이에 치매 예방 및 치매조기진단을 위한 검진을 실시하고 있으나 현재의 검사로는 치매조기진단이 사실상 불가능한 것으로 나타났다. 이를 해결하기 위해서는 의료 빅데이터의 통합 및 각각의 지표를 분석한 결과를 융합·패턴화 시키는 것이 필수적이다. 이에 국회에서는 빅데이터 활용 활성화를 위해 빅데이터의 개방과 공유를 골자로 하는 데이터 3법이 통과되었으나 보다 안전한 활용을 위해 후속 입법의 필요성이 제기되고 있다. 본 연구에서는 선행 연구 고찰을 통해 국외 정책을 파악하고 시사점을 도출, 의료 빅데이터의 안전한 활용을 위해 데이터 3법에 맞춘 구체적 시행령 제정 및 수집 및 폐기까지의 단계별 보안책 수립, 그리고 국가 차원의 거버넌스 구축을 제안하였다.
Journal of the Korean Association of Oral and Maxillofacial Surgeons
/
제46권5호
/
pp.301-312
/
2020
In disease diagnostics and health surveillance, the use of saliva has potential because its collection is convenient and noninvasive. Over the past two decades, the development of salivary utilization for the early detection of cancer, especially oral cavity and oropharynx cancer has gained the interest of the researcher and clinician. Until recently, the oral cavity and oropharynx cancers are still having a five-year survival rate of 62%, one of the lowest in all major human cancers. More than 90% of oral cancers are oral squamous cell carcinoma (OSCC). Despite the ease of accessing the oral cavity in clinical examination, most OSCC lesions are not diagnosed in the early stage, which is suggested to be the main cause of the low survival rate. Many studies have been performed and reported more than 100 potential saliva biomarkers for OSCC. However, there are still obstacles in figuring out the reliable OSCC salivary biomarkers and the clinical application of the early diagnosis protocol. The current review article discusses the emerging issues and is hoped to raise awareness of this topic in both researchers and clinicians. We also suggested the potential salivary biomarkers that are reliable, specific, and sensitive for the early detection of OSCC.
교량 건전성 모니터링은 응답 데이터를 활용한 구조모델링기술, 신호분석, 정보처리 기술의 발전에 따라 손상추정 및 안전성평가와 함께 중요한 연구주제로 부각되었다. 교량 모니터링 시스템은 일반적으로 센서, 데이터 취득장비, 전송시스템 등과 같은 하드웨어와 신호처리, 손상추정, 전시 및 데이터 관리 등과 같은 소프트웨어로 구성된다. 본 논문에서는 교량의 건전도 모니터링을 위한 정보처리기술에 대한 연구 개발 활동을 정리하였다. 교량 건전성 모니터링의 과정에 대한 간단한 소개와 함께, 다양한 신호처리 및 손상추정 알고리즘을 포함한 정보처리기법에 대해서 소개하였다. 현 교량 건전성 모니터링 시스템에서의 주요 문제점과 향후 연구개발활동을 논의하였다.
트위터와 페이스북 등의 SNS(Social Network Service)는 일반 대중의 관심사나 트렌드 등의 이슈를 탐지하기 좋은 지식원이다. 본 논문에서는 검색 질의어에 관련된 이슈나 화제를 질의어에 대한 연관 어휘로 보고, 이를 트위터에서 추출하기 위한 방법을 제안한다. 제안하는 방법에서는 질의어와 연관성이 높은 단어는 질의어와 가까운 위치에서 자주 발생한다고 가정하고, 단어 간 거리에 반비례하고 공기 빈도에 비례하는 단어 간 인접도의 합으로 단어간 연관도를 구한다. 구해진 연관도 값이 임계치를 넘는 어휘를 연관 어휘로 보고 네트워크의 형태로 관련 이슈를 제시한다. 제안한 방법에서는 네트워크의 특성을 분석하여 복합어를 손쉽게 탐지할 수 있다.
International Journal of Computer Science & Network Security
/
제22권10호
/
pp.73-82
/
2022
Early detection continues to be the mainstay of breast cancer control as well as the improvement of its treatment. Even so, the absence of cancer symptoms at the onset has early detection quite challenging. Therefore, various researchers continue to focus on cancer as a topic of health to try and make improvements from the perspectives of diagnosis, prevention, and treatment. This research's chief goal is development of a system with deep learning for classification of the breast cancer as non-malignant and malignant using mammogram images. The following two distinct approaches: the first one with the utilization of patches of the Region of Interest (ROI), and the second one with the utilization of the overall images is used. The proposed system is composed of the following two distinct stages: the pre-processing stage and the Convolution Neural Network (CNN) building stage. Of late, the use of meta-heuristic optimization algorithms has accomplished a lot of progress in resolving these problems. Teaching-Learning Based Optimization algorithm (TIBO) meta-heuristic was originally employed for resolving problems of continuous optimization. This work has offered the proposals of novel methods for training the Residual Network (ResNet) as well as the CNN based on the TLBO and the Genetic Algorithm (GA). The classification of breast cancer can be enhanced with direct application of the hybrid TLBO- GA. For this hybrid algorithm, the TLBO, i.e., a core component, will combine the following three distinct operators of the GA: coding, crossover, and mutation. In the TLBO, there is a representation of the optimization solutions as students. On the other hand, the hybrid TLBO-GA will have further division of the students as follows: the top students, the ordinary students, and the poor students. The experiments demonstrated that the proposed hybrid TLBO-GA is more effective than TLBO and GA.
International Journal of Computer Science & Network Security
/
제24권2호
/
pp.79-88
/
2024
The use of the social media has become part of our daily life activities. The social web channels provide the content generation facility to its users who can share their views, opinions and experiences towards certain topics. The researchers are using the social media content for various research areas. Sentiment analysis, one of the most active research areas in last decade, is the process to extract reviews, opinions and sentiments of people. Sentiment analysis is applied in diverse sub-areas such as subjectivity analysis, polarity detection, and emotion detection. Stance classification has emerged as a new and interesting research area as it aims to determine whether the content writer is in favor, against or neutral towards the target topic or issue. Stance classification is significant as it has many research applications like rumor stance classifications, stance classification towards public forums, claim stance classification, neural attention stance classification, online debate stance classification, dialogic properties stance classification etc. This research study explores different feature sets such as lexical, sentiment-specific, dialog-based which have been extracted using the standard datasets in the relevant area. Supervised learning approaches of generative algorithms such as Naïve Bayes and discriminative machine learning algorithms such as Support Vector Machine, Naïve Bayes, Decision Tree and k-Nearest Neighbor have been applied and then ensemble-based algorithms like Random Forest and AdaBoost have been applied. The empirical based results have been evaluated using the standard performance measures of Accuracy, Precision, Recall, and F-measures.
International Journal of Fuzzy Logic and Intelligent Systems
/
제13권1호
/
pp.67-72
/
2013
Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.