• 제목/요약/키워드: Topic Detection

검색결과 180건 처리시간 0.022초

실시간 이슈 탐지를 위한 일반-급상승 단어사전 생성 및 매칭 기법 (A Generation and Matching Method of Normal-Transient Dictionary for Realtime Topic Detection)

  • 최봉준;이한주;용우석;이원석
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권5호
    • /
    • pp.7-18
    • /
    • 2017
  • 트위터는 사용자들에게 정보를 받거나 교환하는 채널로써의 역할이 활발히 이루어지고 있고 새로운 사건이 발생했을 때 빠르게 반응하기 때문에 지진이나 홍수, 자살 등의 새로운 사건을 탐지하는 센서역할로 활용할 수 있다. 그리고 사건을 탐지하기 위해서 우선적으로 관련된 트윗 추출이 필수적이다. 하지만 관련된 트윗을 찾기 위해 관련 키워드를 포함한 트윗을 추출하기 때문에 해당 키워드가 없지만 의미적으로 사건과 관련이 있는 트윗은 찾지 못하는 문제점이 있다. 또한 기존의 연구들은 디스크에 저장된 데이터에 대한 분석이 주를 이루고 있어 원하는 결과를 얻기 위해서는 데이터를 수집하여 저장하고 분석에 이르기까지 오랜 시간이 소모된다. 이러한 문제점을 해결하기 위해 본 연구에서는 실시간 이슈 탐지를 위한 일반-급상승 단어 사전 생성 및 매칭 기법을 제안한다. 데이터 스트림 인메모리 기반으로 일반-급상승 단어 사전을 생성 및 관리하기 때문에 새로운 사건을 빠르게 학습하고 대응할 수 있다. 또한 분석을 원하는 주제의 일반 사전과 급상승 사전을 동시에 관리하기 때문에 기존의 방법으로 찾지 못하는 트윗을 검출해 낼 수 있다. 본 연구를 통해 빠른 정보와 대응이 필요한 분야에 즉시적으로 활용할 수 있다.

텍스트 마이닝과 기계 학습을 이용한 국내 가짜뉴스 예측 (Fake News Detection for Korean News Using Text Mining and Machine Learning Techniques)

  • 윤태욱;안현철
    • Journal of Information Technology Applications and Management
    • /
    • 제25권1호
    • /
    • pp.19-32
    • /
    • 2018
  • Fake news is defined as the news articles that are intentionally and verifiably false, and could mislead readers. Spread of fake news may provoke anxiety, chaos, fear, or irrational decisions of the public. Thus, detecting fake news and preventing its spread has become very important issue in our society. However, due to the huge amount of fake news produced every day, it is almost impossible to identify it by a human. Under this context, researchers have tried to develop automated fake news detection method using Artificial Intelligence techniques over the past years. But, unfortunately, there have been no prior studies proposed an automated fake news detection method for Korean news. In this study, we aim to detect Korean fake news using text mining and machine learning techniques. Our proposed method consists of two steps. In the first step, the news contents to be analyzed is convert to quantified values using various text mining techniques (Topic Modeling, TF-IDF, and so on). After that, in step 2, classifiers are trained using the values produced in step 1. As the classifiers, machine learning techniques such as multiple discriminant analysis, case based reasoning, artificial neural networks, and support vector machine can be applied. To validate the effectiveness of the proposed method, we collected 200 Korean news from Seoul National University's FactCheck (http://factcheck.snu.ac.kr). which provides with detailed analysis reports from about 20 media outlets and links to source documents for each case. Using this dataset, we will identify which text features are important as well as which classifiers are effective in detecting Korean fake news.

데이터 에러 검출과 수정에 대한 초등교육자료 개발 (Development of Elementary learning materials for Data error detection and correction)

  • 고형철;김종우
    • 정보교육학회논문지
    • /
    • 제22권1호
    • /
    • pp.169-176
    • /
    • 2018
  • 2015 개정 교육과정에 따른 초등학교 소프트웨어교육의 내용에서 큰 변화는 컴퓨터과학 언플러그드교육의 제시이다. 이 교육과정에서 담겨 있는 데이터에러 검출과 수정에 대한 교육자료와 교수법은 부족하여 우리나라 현장학교에 도입하기에 어려움이 있다. 본 연구에서는 이 주제와 관련된 선행 연구를 바탕으로 초등 고학년에 적합한 해밍코드를 활용한 교육자료를 개발하였다. 교육자료의 개발과정은 단계별 학습을 위해 도입부에 카드마술을 소개하고, 해밍코드의 원리를 바탕으로 '에러 검출 및 수정' 교육자료를 활동중심교육으로 구성하였다. 본 연구에서 제시한 교육자료의 현장적용에 대한 평가에서 학습자들은 컴퓨터과학에 대한 이해도를 향상시키는데 긍정적인 영향을 준 것으로 나타났다.

뉴스와 소셜 데이터를 활용한 텍스트 기반 가짜 뉴스 탐지 방법론 (Text Mining-based Fake News Detection Using News And Social Media Data)

  • 현윤진;김남규
    • 한국전자거래학회지
    • /
    • 제23권4호
    • /
    • pp.19-39
    • /
    • 2018
  • 최근 가짜 뉴스가 분야를 막론하고 전 세계에서 주목을 받고 있으며, 현대경제연구원에서는 이러한 가짜 뉴스로 인한 피해 규모가 연간 약 30조 900억원에 달하는 것으로 추산하였다. 정부에서는 "가짜 뉴스 찾기"를 주제로 "인공지능 R&D 챌린지" 대회를 개최하여 가짜 뉴스를 가려낼 인공지능 원천기술 개발에 대한 첫 걸음을 내딛고 있으며, 민간 차원에서도 다양한 분야에서 팩트 체크 서비스가 제공되고 있다. 학계에서도 가짜 뉴스를 탐지하기 위한 시도가 전문가 기반, 집단지성 기반, 인공지능 기반, 시맨틱 기반 등으로 활발하게 이루어지고 있다. 하지만 이러한 시도는 조작의 정밀도가 높을수록 뉴스 자체에 대한 분석만으로 진위 여부를 식별하기가 더욱 어렵다는 한계를 경험하고 있으며, 가짜 뉴스 탐지 모델의 정확도가 과평가된 경향을 보이고 있다. 따라서 본 연구에서는 가짜 뉴스 탐지 모델 정확도의 공정성을 확보하고, 뉴스의 내용뿐만 아니라 해당 뉴스에 대한 반응으로 자연적으로 발생한 광범위한 소셜 데이터를 활용하여 뉴스의 진위 여부를 판정하는 방안을 제안하고자 한다.

Object detection in financial reporting documents for subsequent recognition

  • Sokerin, Petr;Volkova, Alla;Kushnarev, Kirill
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.1-11
    • /
    • 2021
  • Document page segmentation is an important step in building a quality optical character recognition module. The study examined already existing work on the topic of page segmentation and focused on the development of a segmentation model that has greater functional significance for application in an organization, as well as broad capabilities for managing the quality of the model. The main problems of document segmentation were highlighted, which include a complex background of intersecting objects. As classes for detection, not only classic text, table and figure were selected, but also additional types, such as signature, logo and table without borders (or with partially missing borders). This made it possible to pose a non-trivial task of detecting non-standard document elements. The authors compared existing neural network architectures for object detection based on published research data. The most suitable architecture was RetinaNet. To ensure the possibility of quality control of the model, a method based on neural network modeling using the RetinaNet architecture is proposed. During the study, several models were built, the quality of which was assessed on the test sample using the Mean average Precision metric. The best result among the constructed algorithms was shown by a model that includes four neural networks: the focus of the first neural network on detecting tables and tables without borders, the second - seals and signatures, the third - pictures and logos, and the fourth - text. As a result of the analysis, it was revealed that the approach based on four neural networks showed the best results in accordance with the objectives of the study on the test sample in the context of most classes of detection. The method proposed in the article can be used to recognize other objects. A promising direction in which the analysis can be continued is the segmentation of tables; the areas of the table that differ in function will act as classes: heading, cell with a name, cell with data, empty cell.

상황인식 컴퓨팅을 위한 사람 움직임 이벤트 인식 (Recognition of Events by Human Motion for Context-aware Computing)

  • 최요환;신성윤;이창우
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.47-57
    • /
    • 2009
  • 최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법은 MHI(Motion History Image) 시퀀스(sequence)를 이응한 인간의 모션을 분석하며, 사람의 처형과 착용한 옷의 종류와 색상, 그리고 카메라로부터의 위치관계에 불변한 특성을 가진다. 제안된 방법은 기존의 방법들 중, 칼라 정보를 이용한 방법에 비해 조명의 변화에 민감하지 않은 장점이 있으며, 관심의 대상이 되는 객체의 외형과 같은 사전지식에 의존하는 방법에 비해 스케일에 민감하지 않은 장점이 있다. 에지검출 기술을 HMI 순서 영상 정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이벤트 인식의 기본정보로 활용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비젼 기술에 기반한 많은 감시시스템 뿐 아니라 상황인식 기반의 이벤트 검출 시스템에 핵심기술이다.

Two-stage damage identification for bridge bearings based on sailfish optimization and element relative modal strain energy

  • Minshui Huang;Zhongzheng Ling;Chang Sun;Yongzhi Lei;Chunyan Xiang;Zihao Wan;Jianfeng Gu
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.715-730
    • /
    • 2023
  • Broad studies have addressed the issue of structural element damage identification, however, rubber bearing, as a key component of load transmission between the superstructure and substructure, is essential to the operational safety of a bridge, which should be paid more attention to its health condition. However, regarding the limitations of the traditional bearing damage detection methods as well as few studies have been conducted on this topic, in this paper, inspired by the model updating-based structural damage identification, a two-stage bearing damage identification method has been proposed. In the first stage, we deduce a novel bearing damage localization indicator, called element relative MSE, to accurately determine the bearing damage location. In the second one, the prior knowledge of bearing damage localization is combined with sailfish optimization (SFO) to perform the bearing damage estimation. In order to validate the feasibility, a numerical example of a 5-span continuous beam is introduced, also the noise robustness has been investigated. Meanwhile, the effectiveness and engineering applicability are further verified based on an experimental simply supported beam and actual engineering of the I-40 Bridge. The obtained results are good, which indicate that the proposed method is not only suitable for simple structures but also can accurately locate the bearing damage site and identify its severity for complex structure. To summarize, the proposed method provides a good guideline for the issue of bridge bearing detection, which could be used to reduce the difficulty of the traditional bearing failure detection approach, further saving labor costs and economic expenses.

Dynamic Simulation and Analysis of the Space Shuttle Main Engine with Artificially Injected Faults

  • Cha, Jihyoung;Ha, Chulsu;Koo, Jaye;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.535-550
    • /
    • 2016
  • Securing the safety and the reliability of liquid-propellant rocket engines (LREs) for space vehicles is indispensable as engines consist of many complex components and operate under extremely high energy-dense conditions. Thus, health monitoring has become a mandatory requirement, especially for the reusable LREs that are currently being developed. In this context, a dynamic simulation program based on MATLAB/Simulink was developed in the current research on the Space Shuttle Main Engine (SSME), a partly reusable engine. Then, a series of fault simulations using this program was conducted: at a steady state operating condition (104% Rated Propulsion Level), various simulated fault conditions were artificially injected into the simulation models for the five major valves, the pumps, and the turbines of the SSME. The consequent effects due to each fault were analyzed based on the time responses of the major parameters of the engine. It is believed that this research topic is an essential pre-step for the development of fault detection and diagnosis algorithms for reusable engines in the future.

On the Detection of Induction-Motor Rotor Fault by the Combined “Time Synchronous Averaging-Discrete Wavelet Transform” Approach

  • Ngote, Nabil;Ouassaid, Mohammed;Guedira, Said;Cherkaoui, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2315-2325
    • /
    • 2015
  • Induction motors are widely used in industrial processes since they offer a very high degree of reliability. But like any other machine, they are vulnerable to faults, which if left unmonitored, might lead to an unexpected interruption at the industrial plant. Therefore, the condition monitoring of the induction motors have been a challenging topic for many electrical machine researchers. Indeed, the effectiveness of the fault diagnosis and prognosis techniques depends very much on the quality of the fault features selection. However, in induction-motor drives, rotor defects are the most complex in terms of detection since they interact with the supply frequency within a restricted band around this frequency, especially in the no-loaded case. To overcome this drawback, this paper deals with an efficient and new method to diagnose the induction-motor rotor fault based on the digital implementation of the monitoring algorithm based on the association of the Time Synchronous Averaging technique and Discrete Wavelet Transform. Experimental results are presented in order to show the effectiveness of the proposed method. The obtained results are largely satisfactory, indicating a promising industrial application of the combined “Time Synchronous Averaging – Discrete Wavelet Transform” approach.

Damage detection for a beam under transient excitation via three different algorithms

  • Zhao, Ying;Noori, Mohammad;Altabey, Wael A.
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.803-817
    • /
    • 2017
  • Structural health monitoring has increasingly been a focus within the civil engineering research community over the last few decades. With increasing application of sensor networks in large structures and infrastructure systems, effective use and development of robust algorithms to analyze large volumes of data and to extract the desired features has become a challenging problem. In this paper, we grasp some precautions and key points of the signal processing approach, wavelet, establish a relative reliable framework, and analyze three problems that require attention when applying wavelet based damage detection approach. The cases studies how to use optimal scales for extracting mode shapes and modal curvatures in a reinforced concrete beam and how to effectively identify damages using maximum curves of wavelet coefficient differences. Moreover, how to make a recognition based on the wavelet multi-resolution analysis, wavelet packet energy, and fuzzy sets is a meaningful topic that has been addressed in this work. The relative systematic work that compasses algorithms, structures and evaluation paves a way to a framework regarding effective structural health monitoring, orientation, decision and action.