• 제목/요약/키워드: Topic Detection

검색결과 180건 처리시간 0.025초

온라인 텍스트문서의 계층적 트리 기반 주제탐색 기법 (A Novel Technique of Topic Detection for On-line Text Documents: A Topic Tree-based Approach)

  • 현만;김한준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.396-399
    • /
    • 2012
  • Topic detection is a problem of discovering the topics of online publishing documents. For topic detection, it is important to extract correct topic words and to show the topical words easily to understand. We consider a topic tree-based approach to more effectively and more briefly show the result of topic detection for online text documents. In this paper, to achieve the topic tree-based topic detection, we propose a new term weighting method, called CTF-CDF-IDF, which is simple yet effective. Moreover, we have modified a conventional clustering method, which we call incremental k-medoids algorithm. Our experimental results with Reuters-21578 and Google news collections show that the proposed method is very useful for topic detection.

인스턴트 메시징에서의 대화 주제 및 주제 전환 탐지 (Topic and Topic Change Detection in Instance Messaging)

  • 최윤정;신욱현;정윤재;맹성현;한경수
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권7호
    • /
    • pp.59-66
    • /
    • 2008
  • 본 논문에서는 인스턴트 메시징(Instant Messaging), 채팅과 같은 텍스트 기반의 대화에서 현재 발화를 기준으로 대화의 주제를 파악하고, 대화 주제 전환 여부를 판단하는 기법에 대해 기술한다. 대화는 다른 종류의 글과 다르게 길이가 매우 짧아 적은 수의 단어를 사용하고, 두 사람 이상이 참여를 하며, 대화의 이력(History)이 현재의 발화에 영향을 미친다. 이러한 특성에 따라 본 논문에서는 사용자 발화 뿐 아니라 대화 상대자의 발화에서 추출한 키워드 기반으로 주제 탐지를 하며, 대화의 이력도 고려하여 대화 주제 탐지의 정확도를 높힌 연구 결과를 기술한다. 대화주제 전환 탐지는 이전 발화와 현재 발화에서 탐지된 주제의 유사성을 계산하여, 유사성이 낮은 경우에 전환 탐지가 이루어졌다고 판단하였다. 본 논문의 실험에서 대화 주제 탐지는 88.20%. 대화 주제 전환 탐지는 87.36%의 정확도를 얻었다.

  • PDF

Jointly Image Topic and Emotion Detection using Multi-Modal Hierarchical Latent Dirichlet Allocation

  • Ding, Wanying;Zhu, Junhuan;Guo, Lifan;Hu, Xiaohua;Luo, Jiebo;Wang, Haohong
    • Journal of Multimedia Information System
    • /
    • 제1권1호
    • /
    • pp.55-67
    • /
    • 2014
  • Image topic and emotion analysis is an important component of online image retrieval, which nowadays has become very popular in the widely growing social media community. However, due to the gaps between images and texts, there is very limited work in literature to detect one image's Topics and Emotions in a unified framework, although topics and emotions are two levels of semantics that often work together to comprehensively describe one image. In this work, a unified model, Joint Topic/Emotion Multi-Modal Hierarchical Latent Dirichlet Allocation (JTE-MMHLDA) model, which extends previous LDA, mmLDA, and JST model to capture topic and emotion information at the same time from heterogeneous data, is proposed. Specifically, a two level graphical structured model is built to realize sharing topics and emotions among the whole document collection. The experimental results on a Flickr dataset indicate that the proposed model efficiently discovers images' topics and emotions, and significantly outperform the text-only system by 4.4%, vision-only system by 18.1% in topic detection, and outperforms the text-only system by 7.1%, vision-only system by 39.7% in emotion detection.

  • PDF

Topic Level Disambiguation for Weak Queries

  • Zhang, Hui;Yang, Kiduk;Jacob, Elin
    • Journal of Information Science Theory and Practice
    • /
    • 제1권3호
    • /
    • pp.33-46
    • /
    • 2013
  • Despite limited success, today's information retrieval (IR) systems are not intelligent or reliable. IR systems return poor search results when users formulate their information needs into incomplete or ambiguous queries (i.e., weak queries). Therefore, one of the main challenges in modern IR research is to provide consistent results across all queries by improving the performance on weak queries. However, existing IR approaches such as query expansion are not overly effective because they make little effort to analyze and exploit the meanings of the queries. Furthermore, word sense disambiguation approaches, which rely on textual context, are ineffective against weak queries that are typically short. Motivated by the demand for a robust IR system that can consistently provide highly accurate results, the proposed study implemented a novel topic detection that leveraged both the language model and structural knowledge of Wikipedia and systematically evaluated the effect of query disambiguation and topic-based retrieval approaches on TREC collections. The results not only confirm the effectiveness of the proposed topic detection and topic-based retrieval approaches but also demonstrate that query disambiguation does not improve IR as expected.

새로운 주제 탐지를 통한 지식 구조 갱신에 관한 연구 (A Study on Updating the Knowledge Structure Using New Topic Detection Methods)

  • 김판준;정영미
    • 정보관리학회지
    • /
    • 제22권1호
    • /
    • pp.191-208
    • /
    • 2005
  • 새로운 주제의 탐지를 위한 여러 접근법들을 지식 구조 표현 방법 중 하나인 디스크립터의 부여 및 갱신 과정에 적용하였다. 새로운 주제 탐지는, 특히 특정 학문 분야에서 새로운 주제의 출현 및 성장으로 인하여 지식구조상의 변화가 발생하는 경우에, 기존의 색인어로는 이를 표현할 수 없거나 표현상의 제한이 따르는 문제를 해결하는 데 응용할 수 있다. 실험 결과, 정보학 내에서 긍정적 측면의 변화가 발생한 것으로 식별된 신흥 주제들은 상당수가 서로 밀접하게 연관되어 있으면서 동시에 성장${\cdot}$발전의 단계에 있는 주제임을 확인하였다. 또한, 새로운 주제 탐지를 통한 후보 디스크립터 리스트의 사용이 색인자의 색인작업을 지원하는 효율적인 도구가 될 수 있다는 가능성을 보여 주었다. 특히, 적절한 디스크립터의 선정과 부여를 위한 후보 디스크립터 리스트의 제공은 색인작업의 효율성과 정확성을 향상시키는 데 기여할 수 있을 것이다.

실시간 동영상 시청시 주제탐색조건과 주제관련성이 내재적 유발전위 활성에 미치는 영향 (The Influence of Topic Exploration and Topic Relevance On Amplitudes of Endogenous ERP Components in Real-Time Video Watching)

  • 김용호;김현희
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.874-886
    • /
    • 2019
  • To delve into the semantic gap problem of the automatic video summarization, we focused on an endogenous ERP responses at around 400ms and 600ms after the on-set of audio-visual stimulus. Our experiment included two factors: the topic exploration of experimental conditions (Topic Given vs. Topic Exploring) as a between-subject factor and the topic relevance of the shots (Topic-Relevant vs. Topic-Irrelevant) as a within-subject factor. For the Topic Given condition of 22 subjects, 6 short historical documentaries were shown with their video titles and written summaries, while in the Topic Exploring condition of 25 subjects, they were asked instead to explore topics of the same videos with no given information. EEG data were gathered while they were watching videos in real time. It was hypothesized that the cognitive activities to explore topics of videos while watching individual shots increase the amplitude of endogenous ERP at around 600 ms after the onset of topic relevant shots. The amplitude of endogenous ERP at around 400ms after the onset of topic-irrelevant shots was hypothesized to be lower in the Topic Given condition than that in the Topic Exploring condition. The repeated measure MANOVA test revealed that two hypotheses were acceptable.

Phrase-based Topic and Sentiment Detection and Tracking Model using Incremental HDP

  • Chen, YongHeng;Lin, YaoJin;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5905-5926
    • /
    • 2017
  • Sentiments can profoundly affect individual behavior as well as decision-making. Confronted with the ever-increasing amount of review information available online, it is desirable to provide an effective sentiment model to both detect and organize the available information to improve understanding, and to present the information in a more constructive way for consumers. This study developed a unified phrase-based topic and sentiment detection model, combined with a tracking model using incremental hierarchical dirichlet allocation (PTSM_IHDP). This model was proposed to discover the evolutionary trend of topic-based sentiments from online reviews. PTSM_IHDP model firstly assumed that each review document has been composed by a series of independent phrases, which can be represented as both topic information and sentiment information. PTSM_IHDP model secondly depended on an improved time-dependency non-parametric Bayesian model, integrating incremental hierarchical dirichlet allocation, to estimate the optimal number of topics by incrementally building an up-to-date model. To evaluate the effectiveness of our model, we tested our model on a collected dataset, and compared the result with the predictions of traditional models. The results demonstrate the effectiveness and advantages of our model compared to several state-of-the-art methods.

트위터 데이터를 이용한 네트워크 기반 토픽 변화 추적 연구 (Topic-Network based Topic Shift Detection on Twitter)

  • 진설아;허고은;정유경;송민
    • 정보관리학회지
    • /
    • 제30권1호
    • /
    • pp.285-302
    • /
    • 2013
  • 본 연구는 높은 접근성과 간결성으로 인해 방대한 양의 텍스트를 생산하는 트위터 데이터를 분석하여 토픽의 변화 시점 및 패턴을 파악하였다. 먼저 특정 상품명에 관한 키워드를 추출한 후, 동시출현단어분석(Co-word Analysis)을 이용하여 노드와 에지를 통해 토픽과 관련 키워드를 직관적으로 파악 가능한 네트워크로 표현하였다. 이후 네트워크 분석 결과를 검증하기 위해 출현빈도 기반의 시계열 분석과 LDA 토픽 모델링을 실시하였다. 또한 트위터 상의 토픽 변화와 언론 기사 검색결과를 비교한 결과, 트위터는 언론 뉴스에 즉각적으로 반응하며 부정적 이슈를 빠르게 확산시키는 것을 확인하였다. 이를 통해 기업은 대중의 부정적 의견을 신속하게 파악하고 이에 대한 즉각적인 의사결정 및 대응을 위한 도구로 본 연구방법을 활용할 수 있을 것으로 기대된다.

블로고스피어에서 주제에 관한 의견을 찾는 융합적 의견탐지방법 (Fusion Approach to Targeted Opinion Detection in Blogosphere)

  • Yang, Kiduk
    • 한국도서관정보학회지
    • /
    • 제46권1호
    • /
    • pp.321-344
    • /
    • 2015
  • 이 논문은 여러가지 자료를 결합해 어떤 주제에 관한 의견이 실려있는 블로그를 찾는 융합적 의견탐지방법을 소개한다. 주제에 관한 의견이 담긴 블로그를 찾기위해 이 연구는 기존의 IR 방법으로 주제에 관한 블로그를 검색한 후 여러가지 의견탐지 방법을 합산한 의견점수로 검색결과의 순위를 조정하는 방법을 쓴다. 의견탐지 모듈의 주요 구성 요소는 의견이 실려있는 블로그에 자주 나오는 단어들을 활용한 고빈도 모듈, 강한 감정을 표현하는 희귀 한 용어들을 (e.g., "sooo good") 활용한 저빈도 모듈, "I"와 "you"에 묶인 n-gram을 (e.g., I believe, You will love) 활용한 IU모듈, 윌슨의 주관 용어 목록을 바탕으로 한 윌슨의 어휘모듈, 그리고 소수의 의견 약어를 (e.g., imho) 이용한 의견 약어 모듈들 이다. 본 연구의 결과는 여러 가지 방법을 융합하는 것이 의견 검출 성능을 향상시키는데 효과적이 다는 것을 보여주었다.

토픽 분할에 의한 토픽맵 매칭 및 통합 기법 (Topic maps Matching and Merging Techniques based on Partitioning of Topics)

  • 김정민;정현숙
    • 정보처리학회논문지D
    • /
    • 제14D권7호
    • /
    • pp.819-828
    • /
    • 2007
  • 본 논문에서는 토픽맵의 모델 특성을 고려한 토픽맵 매칭 및 통합 기법을 제안한다. 이전까지의 대부분의 스키마 매칭 연구들은 계산 시간의 효율성을 고려하지 않고 매칭 기법의 범용성 및 정확성을 높이기 위한 목적으로 개발되어 왔다. 그러나 현재 표준적인 온톨로지 언어로 RDF/OWL과 토픽맵이 사용되고 있으며 앞으로 많은 온톨로지들이 이들 언어로 구현될 것이다. 따라서 본 논문에서는 토픽맵 데이터 모델의 구조적 특성 및 제약조건을 고려하여 토픽 분할, 토픽명기반 매칭연산, 속성기반 매칭연산, 계층구조기반 매칭연산, 연관관계기반 매칭연산 및 통합 알고리즘을 개발함으로써 효과적이면서 효율적인 토픽맵 매칭 및 통합이 가능함을 보인다.