• Title/Summary/Keyword: Topic Based

Search Result 1,971, Processing Time 0.033 seconds

A Novel Technique of Topic Detection for On-line Text Documents: A Topic Tree-based Approach (온라인 텍스트문서의 계층적 트리 기반 주제탐색 기법)

  • Xuan, Man;Kim, Han-Joon
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.396-399
    • /
    • 2012
  • Topic detection is a problem of discovering the topics of online publishing documents. For topic detection, it is important to extract correct topic words and to show the topical words easily to understand. We consider a topic tree-based approach to more effectively and more briefly show the result of topic detection for online text documents. In this paper, to achieve the topic tree-based topic detection, we propose a new term weighting method, called CTF-CDF-IDF, which is simple yet effective. Moreover, we have modified a conventional clustering method, which we call incremental k-medoids algorithm. Our experimental results with Reuters-21578 and Google news collections show that the proposed method is very useful for topic detection.

Hot Topic Discovery across Social Networks Based on Improved LDA Model

  • Liu, Chang;Hu, RuiLin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3935-3949
    • /
    • 2021
  • With the rapid development of Internet and big data technology, various online social network platforms have been established, producing massive information every day. Hot topic discovery aims to dig out meaningful content that users commonly concern about from the massive information on the Internet. Most of the existing hot topic discovery methods focus on a single network data source, and can hardly grasp hot spots as a whole, nor meet the challenges of text sparsity and topic hotness evaluation in cross-network scenarios. This paper proposes a novel hot topic discovery method across social network based on an im-proved LDA model, which first integrates the text information from multiple social network platforms into a unified data set, then obtains the potential topic distribution in the text through the improved LDA model. Finally, it adopts a heat evaluation method based on the word frequency of topic label words to take the latent topic with the highest heat value as a hot topic. This paper obtains data from the online social networks and constructs a cross-network topic discovery data set. The experimental results demonstrate the superiority of the proposed method compared to baseline methods.

A Study on Mapping Users' Topic Interest for Question Routing for Community-based Q&A Service (커뮤니티 기반 Q&A서비스에서의 질의 할당을 위한 이용자의 관심 토픽 분석에 관한 연구)

  • Park, Jong Do
    • Journal of the Korean Society for information Management
    • /
    • v.32 no.3
    • /
    • pp.397-412
    • /
    • 2015
  • The main goal of this study is to investigate how to route a question to some relevant users who have interest in the topic of the question based on users' topic interest. In order to assess users' topic interest, archived question-answer pairs in the community were used to identify latent topics in the chosen categories using LDA. Then, these topic models were used to identify users' topic interest. Furthermore, the topics of newly submitted questions were analyzed using the topic models in order to recommend relevant answerers to the question. This study introduces the process of topic modeling to investigate relevant users based on their topic interest.

An Implementation of FRBR Model by Using Topic Maps (Topic Maps를 이용한 MARC데이터의 FRBR모델 구현에 관한 연구)

  • Lee, Hyun-Sil;Han, Sung-Kook
    • Journal of the Korean Society for information Management
    • /
    • v.22 no.3 s.57
    • /
    • pp.289-306
    • /
    • 2005
  • As FRBR defines structural framework based on ER modeling for bibliographic data elements, an effective tool is required to implement FRBR model. In this paper, we present the implementation of FRBR model based on Topic Maps. To show the effectiveness of Topic Maps as the implantation language of FRBR, we implement FRBR model of MyongSungHwangHu by means of Topic Maps. We can ascertain that topic-association of Topic Maps conceptually harmonize with entity-relation of FRBR, which means that Topic Maps is suitable for the implementation of FRBR model.

An Ontology-Based Labeling of Influential Topics Using Topic Network Analysis

  • Kim, Hyon Hee;Rhee, Hey Young
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1096-1107
    • /
    • 2019
  • In this paper, we present an ontology-based approach to labeling influential topics of scientific articles. First, to look for influential topics from scientific article, topic modeling is performed, and then social network analysis is applied to the selected topic models. Abstracts of research papers related to data mining published over the 20 years from 1995 to 2015 are collected and analyzed in this research. Second, to interpret and to explain selected influential topics, the UniDM ontology is constructed from Wikipedia and serves as concept hierarchies of topic models. Our experimental results show that the subjects of data management and queries are identified in the most interrelated topic among other topics, which is followed by that of recommender systems and text mining. Also, the subjects of recommender systems and context-aware systems belong to the most influential topic, and the subject of k-nearest neighbor classifier belongs to the closest topic to other topics. The proposed framework provides a general model for interpreting topics in topic models, which plays an important role in overcoming ambiguous and arbitrary interpretation of topics in topic modeling.

Keyword Reorganization Techniques for Improving the Identifiability of Topics (토픽 식별성 향상을 위한 키워드 재구성 기법)

  • Yun, Yeoil;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.18 no.4
    • /
    • pp.135-149
    • /
    • 2019
  • Recently, there are many researches for extracting meaningful information from large amount of text data. Among various applications to extract information from text, topic modeling which express latent topics as a group of keywords is mainly used. Topic modeling presents several topic keywords by term/topic weight and the quality of those keywords are usually evaluated through coherence which implies the similarity of those keywords. However, the topic quality evaluation method based only on the similarity of keywords has its limitations because it is difficult to describe the content of a topic accurately enough with just a set of similar words. In this research, therefore, we propose topic keywords reorganizing method to improve the identifiability of topics. To reorganize topic keywords, each document first needs to be labeled with one representative topic which can be extracted from traditional topic modeling. After that, classification rules for classifying each document into a corresponding label are generated, and new topic keywords are extracted based on the classification rules. To evaluated the performance our method, we performed an experiment on 1,000 news articles. From the experiment, we confirmed that the keywords extracted from our proposed method have better identifiability than traditional topic keywords.

Building Topic Hierarchy of e-Documents using Text Mining Technology

  • Kim, Han-Joon
    • Proceedings of the CALSEC Conference
    • /
    • 2004.02a
    • /
    • pp.294-301
    • /
    • 2004
  • ·Text-mining approach to e-documents organization based on topic hierarchy - Machine-Learning & information Theory-based ㆍ 'Category(topic) discovery' problem → document bundle-based user-constraint document clustering ㆍ 'Automatic categorization' problem → Accelerated EM with CU-based active learning → 'Hierarchy Construction' problem → Unsupervised learning of category subsumption relation

  • PDF

Extension and Case Analysis of Topic Modeling for Inductive Social Science Research Methodology (귀납적 사회과학연구 방법론을 위한 토픽모델링의 확장 및 사례분석)

  • Kim, Keun Hyung
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.25-45
    • /
    • 2022
  • Purpose In this paper, we propose the method to extend topic modeling techniques in order to derive data-based research hypotheses when establishing research hypotheses for social sciences, As a concept in contrast to the existing deductive hypothesis establishment methodology for the social science research, the topic modeling technique was expanded to enable the so-called inductive hypothesis establishment methodology, and an analysis case of the Seongsan Ilchulbong online review based on the proposed methodology was presented. Design/methodology/approach In this paper, an extension architecture and extension algorithm in the form of extending the existing topic modeling were proposed. The extended architecture and algorithm include data processing method based on topic ratio in document, correlation analysis and regression analysis of processed data for topics derived by existing topic modeling. In addition, in this paper, an analysis case of the online review of Seongsan Ilchulbong Peak was presented by applying the extended topic modeling algorithm. An exploratory analysis was performed on the Seongsan Ilchulbong online reviews through the basic text analysis. The data was transformed into 5-point scale to enable correlation and regression analysis based on the topic ratio in each online review. A regression analysis was performed using the derived topics as the independent variable and the review rating as the dependent variable, and hypotheses could be derived based on this, which enable the so-called inductive hypothesis establishment. Findings This paper is meaningful in that it confirmed the possibility of deriving a causal model and setting an inductive hypothesis through an extended analysis of topic modeling.

Exploring Topic Defining Patterns of Students in Interdisciplinary Capstone Design Class (캡스톤 디자인 수업에서 학생들의 주제 결정 패턴 탐색)

  • Byun, Moon Kyoung
    • Journal of Engineering Education Research
    • /
    • v.21 no.1
    • /
    • pp.14-26
    • /
    • 2018
  • The goal of this study was to explore topic defining patterns of students in interdisciplinary Capstone Design Class. Thematic analysis methodology was used to examine 85 Korean college students' lived experience of project topic generation which is for interdisciplinary capstone design class and Individual open-ended survey for constituted the data sources. Findings show four contexts of student's topic defining patterns using thematic analysis including (a) one leader's directed problem representation, (b) team common decision making after brainstorming, (c) empathy with professor proposed issue, (d) problems offered to students by corporate or research competitions. Based on research result, I could suggest instructional strategies of Capstone Design Class of teacher for helping their students' topic defining. It was necessary to minimize the opinions of the instructors at the beginning of class and minimize the number of team members. And also it provided a lot of opportunities to collaborate with companies in the topic selection process, it will help to develop the students' ability to determine the valuable topic in project.

A Design of K-XMDR Search System Using Topic Maps

  • Jialei, Zhang;Hwang, Chi-Gon;Jung, Gye-Dong;Choi, Young-Keun
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.287-294
    • /
    • 2011
  • This paper proposes a search system using the topic maps that it extends XMDR into Knowledge based XMDR for solving of the problems of the heterogeneity of distributed data on a network and integrate data by an efficient way. The proposed system combined Topic Maps and the extended metadata registry effectively. The Topic Maps represent related knowledge and reasoning relationship by associations of topic. And the extended metadata registry standards and manages the metadata of the local systems through registration and certification on the distributed environment. We also proposed a meta layer, include the meta topic and meta association to achieve semantic classification grouping of topics and to define relationship between Topic Maps and extended metadata registry.