• Title/Summary/Keyword: Topex/poseidon sea surface heights

Search Result 8, Processing Time 0.024 seconds

Comparison of Topex/Poseidon sea surface heights and Tide Gauge sea levels in the South Indian Ocean

  • Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.70-75
    • /
    • 1998
  • The comparison of Topex/Poseidon sea surface heights and Tide Gauge sea levels was studied in the South Indian Ocean after Topex/Poseidon mission of about 3 years (11- 121 cycles) from January 1993 through December 1995. The user's handbook (AVISO) for sea surface height data process was used in this study Topex/Poseidon sea suface heights ($\zeta$$^{T/P}$), satellite data at the point which is very closed to Tide Gauge station, were chosen in the same latitude of Tide Gauge station. These data were re-sampled by a linear interpolation with the interval of about 10 days, and were filtered by the gaussian filter with a 60 day-window. Tide Gauge sea levels ($\zeta$$^{Argos}$, $\zeta$$^{In-situ}$ and $\zeta$$^{Model}$), were also treated with the same method as satellite data. The main conclusions obtained from the root-mean-square and correlation coefficient were as follows: 1) to Produce Tide Gauge sea levels from bottom pressure, in-situ data of METEO-FRANCE showed very good values against to the model data of ECMWF and 2) to compare Topex/Poseidon sea surface heights of Tide Gauge sea levels, the results of the open sea areas were better than those of the coast and island areas.

  • PDF

Comparison of Topex/poseidon Sea Surface Heights with Tide Gauge Sea Levels in the South Indian Ocean (남인도양에서의 Topex/Poseidon sea surface heights와 tide gauge sea levels간의 비교)

  • YOON Hong-Joo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.368-373
    • /
    • 1999
  • Topex/Poseidon sea surface heights are compared to tide gauge sea levels in the South Indian Ocean in the period of January 1993 to December 1995. A user's handbook (AVISO) for processing sea surface height data was used in this study. Topex/Poseidon sea surface heights were obtained from satellite data at the proximity of tide gauge stations. These data were reproduced by a linear interpolation with the interval of 10 days and were processed by the Gaussian filter with a 60-day window. The tide gauge sea levels were obtained in the same manner as the satellite data. The main results on RMS (Root-Mean-Square) and CORR (CORRelation coefficient) in our study were shown as follows: 1) on the characteristics between two data (in-situ and model data), the results (RMS=2.96 cm & CORR=$92\%$ in the Amsterdam plateau, and RMS=3.45 cm & CORR=$59\%$ in the Crozet plateau) of the comparison of Topex/Poseidon sea surface heights with tide gauge sea levels, which was calculated by in-situ data of obsewed station showed generally low values in RMS and high values in CORR against to the results (RMS=4.69 cm & CORR=$79\%$ in the Amsterdam plateau, and RMS= 6.29 cm & CORR= $49\%$ in the Crozet plateau) of the comparison of Topex/Poseidon sea surface heights with tide gauge sea levels, which was calculated by model data of ECMWF (European Center for Medium-range Weather Forecasting), and 2) on the characteristics between two areas (Kerguelen plateau and island), the results (RMS=3.28 cm & CORR= $54\%$ in the Kerguelen plateau) of open sea area showed low values in RMS and high values in CORR against to the results (RMS= 5.71 cm & CORR=$38\%$ in the Kerguelen island) of coast area, respectively.

  • PDF

Characteristics of the Monthly Mean Sea Surface Winds and Wind Waves near the Korean Marginal Seas in the 2002 Year Computed Using MM5/KMA and WAVEWATHC-III model (중규모 기상모델(MM5/KMA)과 3세대 파랑모델(WAVEWATCH-III)로 계산된 한반도 주변해역의 2002년 월평균 해상풍과 파랑 분포 특성)

  • 서장원;장유순
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.262-273
    • /
    • 2003
  • We have analyzed the characteristics of the monthly mean sea surface winds and wind waves near the Korean marginal seas in the 2002 year on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological Administration and the third generation wave model, WAVEWATCH-III. which takes the sea surface winds derived from MM5/KMA model as the initial data. Statistical comparisons have been applied with both the marine meteorological observation buoy and the TOPEX/POSEIDON satellite wave heights data to verify the model results. The correlation coefficients between the models and observation data reach up to about 60-80%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions except for Chilbal-Do located very close to the land. Based on these verification results, the distributions of monthly mean sea surface winds, significant wave heights, wave lengths and wave periods around the Korean marginal seas during 2002 year have been represented.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

SEASONAL AND INTER-ANNUAL VARIATION OF SEA SURFACE CURRENT IN THE GULF OF THAILAND

  • Sojisuporn, Pramot;Morimoto, Akihiko;Yanagi, Tetsuo
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.352-355
    • /
    • 2006
  • In this study, the seasonal and inter-annual variation of sea surface current in the Gulf of Thailand were revealed through the use of WOD temperature and salinity data and monthly sea surface dynamic heights (SSDH) from TOPEX/Poseidon and ERS-2 altimetry data during 1995-2001. The mean dynamic height and mean geostrohic current were derived from the climatological data while SSDH data gave monthly dynamic heights and their geopstrophic currents. The mean geostrophic current showed strong southward and westward flow of South China Sea water along the gulf entrance. Counterclockwise eddy in the inner gulf and the western side of the gulf entrance associated with upwelling in the area. Seasonal geostrophic currents show basin-wide counterclockwise circulation during the southwest monsoon season and clockwise circulation during the northeast monsoon season. Upwelling was enhanced during the southwest monsoon season. The circulation patterns varied seasonally and inter-annually probably due to the variation in wind regime. And finally we found that congregation, spawning, and migration routes of short-bodied mackerel conform well with coastal upwelling and surface circulation in the gulf.

  • PDF

Comparison of Sea Level Data from TOPEX/POSEIDON Altimeter and in-situ Tide Gauges in the East Asian Marginal Seas (동아시아 주변해역에서의 TOPEX/POSEIDON 고도 자료와 현장 해수면 자료의 비교)

  • Youn, Yong-Hoon;Kim, Ki-Hyun;Park, Young-Hyang;Oh, Im-Sang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.267-275
    • /
    • 2000
  • In an effort to assess the reliability of satellite altimeter system, we conducted a comparative analysis of sea level data that were collected using the TOPEX/POSEIDON (T/P) altimeter and the 10 tide gauge (TG) stations in the satellite passing track. The analysis was made using data sets collected from marginal sea regions surrounding the Korean Peninsula at T/P cycles of 2 to 230, which correspond to October 1992 to December 1998. Because of strong tidal activity in the study area, treatment of tidal errors is a very critical step in data processing. Hence in the computation of dynamic heights from the Tn data, we adapted the procedures of Park and Gamberoni (1995) to reduce errors associated with it. When these T/P data were treated, the alias periods of M$_2$, S$_2$, and K$_1$ constitutions were found at 62.1, 58.7, and 173 days. The compatibility of the T/P and TG data sets were examined at various filtering periods. The results indicate that the low-frequency signal of Tn data can be interpreted more safely with longer filtering periods (such as up to the maximum selected values of 200 days). When RMS errors for 200-day low-pass filter period was compared among the whole 10 tidal stations, the values spanned in the range of 2.8 to 6.7 cm. The results of correlation analysis at this filtering period also showed a strong agreement between the Tn and TG data sets over the whole stations investigated (e.g., P values consistently less than 0.0001). According to our analysis, we conclude that the analysis of surface sea level using satellite altimeter data can be made safely and reasonably long filtering periods such as 200 days.

  • PDF

Spectral Characteristics of Sea Surface Height in the East Sea from Topex/Poseidon Altimeter Data (Topex/Poseidon에서 관측된 동해 해수면의 주기특성 연구)

  • 황종선;민경덕;이준우;원중선;김정우
    • Economic and Environmental Geology
    • /
    • v.34 no.4
    • /
    • pp.375-383
    • /
    • 2001
  • We extracted sea surface heights(SSH) from the TopexJPoseidon(T/P) radar altimeter data to compare with fhe SSH estimated from in-situ lide gauges(T/G) at Ulleungdo, Pohang, and SockcholMucko sites. Selection criteria such as wet/dry troposphere, ionosphere, and ocean tide were used to estimate accurate SSH. For time series analysis, the one-hour interval tide gauge SSHs were resampled al lO-day interval of the satellite SSHs. The ocean tide model applied in the altimeter data processing showed periodic aliasings of 175.5 day, 87.8 day, 62J day, 58.5 day, 49.5 day and 46.0 day, and, hence, the ZOO-day filtering was applied to reduce these spectral noises. Wavenumber correlation analysis was also applied to extract common components between the two SSHs, resulting in enhancing the correlation coefficient(CC) dramatically. The original CCs between the satenite and tide gauge SSHs are 0.46. 0.26, and 0.]5, respectively. Ulleungdo shows the largest cc bec;luase the site is far from the coast resulting in the minimun error in the satellite observations. The CCs were then increased to 0.59, 030, and 0.30, respectively, after 200.day filtering, and to 0.69, 0.63. and 0.59 after removing inversely correlative components using wavenumber correlation analysis. The CCs were greatly increased by 87, 227, and 460% when the wavenumber correlation analysis was followed by 2oo-day filtering, resulting in the final CCs of 0.86, 0.85, 0.84, respectively. It was found that the best SSHs were estimated when the two methods were applied to the original data. The low-pass filtered TIP SSHs were found to be well correlated with the TIG SSHs from tide gauges, and the best correlation results were found when we applied both low-pass filtering and spectral correlation analysis to the original SSHs.

  • PDF