• Title/Summary/Keyword: Topex/Poseidon altimeter

Search Result 41, Processing Time 0.02 seconds

On characteristics of environmental correction factors in the South Indian Ocean by Topex/Poseidon satellite altimetric data (Topex/Poseidon 위성의 Altimeter자료를 이용한 남인도양의 환경보정인자 특성에 관한 연구)

  • 윤홍주;김영섭;이재철
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.2
    • /
    • pp.117-128
    • /
    • 1998
  • Topex/Poseidon satellite, launched in Auguest 1992, has provided more 5 years of very good quality data. Efficient improvements, either about instrumental accuracy or about sea level data correction, have been made so that Topex/Poseidon has become presently a wonderful tool for many researchers. The first mission data of 73 cycles, September 1992 - August 1994, was used to our study in order to know characteristics of environmental correction factors in the Amsterdam-Crozet-Kerguelen region of the South Indian Ocean. According to standard procedures as defined under user handbook for sea surface height data processes, then we have chosen cycles 43 as the cycle of reference because this cycle has provided the completed data for measurement points and has presented the exacted position of ground track compared to another cycles. It was computed variations of various factors for correction in ascending ground track 103(Amsterdam-Kerguelen continental plateau) and descending ground track170 (Crozet basin). Here the variations of ionosphere, dry troposphere, humid troposphere, electromagnetic bias, elastic tide and loading tide were generally very smaller as a few of cm, but the variations of oceanic tide(30-35cm) and inverted barometer(15-30cm) were higher than another factors. For the correction of ocean tide, our model(CEFMO: Code d' Elements Finis pour la Maree Oceanique) - This is hydrodynamic model that is very well applicated in all oceanic situations - was used because this model has especially good solution in the coastal and island area as the open sea area. Conclusionally, it should be understood that the variation of ocean free surface is mainly under the influence of tides(>80-90%) in the Amsterdam - Crozet- Kerguelen region of the South Indian Ocean.

A Study in the neighbouring sea variation of Cheju and Influence of China Coastal Water by Topex/Poseidon Altimeter Data and in-situ Salinity Data

  • Cho Han Keun;Yoon Hong Joo
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.188-191
    • /
    • 2004
  • Appearance and disappearance of the China Coastal Waters(CCW) in the neighbouring sea of Cheju Island was very different yearly but usually appeared strongly in summer. At this time, sea level and salinity were varied in this area by the influence of the CCW. Satellite data(T/P;Topex/Poseidon) and Salinity (NFRID;National Fisheries Research and Development Institute) were used from 1993 to 2001. We compared with TG data of NOR I and TIP data in the observed station(33 31'N, 12632'E). Coefficient of correlation was 0.6~0.8 with the exception of 1993 and 1995. And variations of salinity was higher than $32.00\%_{\circ}$ in the southwestern part of Cheju Island and the southern part of the South Sea of Korea during June-October and SLA(Sea level Anomaly) was 10-11cm. Salinity of the southeastern part was higher than those of the southwestern part and SLA was 12~13cm because of the influence of Tsushima Current.

  • PDF

Distribution of Antarctic Sea Ice from Satellite Altimetry in the Weddell Sea: Preliminary Results

  • Kim, Jeong-Woo;Hong, Sung-Min;Hwang, Jong-Sun;Yoon, Ho-Il;Lee, Bang-Yong;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.255-261
    • /
    • 2002
  • We investigated the distribution of sea ice using Topex/Poseidon (T/P) and ERS-1 .ada. altimeter data in the northwest Weddell Sea, Antarctica, between the area $45-75^{\circ}W\;and\;55-66^{\circ}S$. Using the Geo_Bad_1 flag of the Merged GDR of the T/P, we classified the surface into ocean, land, and sea. Total 257 cycles of altimeter measurements between Oct. 1992 and Sep. 1999 (for nearly 2570 days) were used to analyze the distribution of the Antarctic sea ice. We then calculated the surface area of ice coverage using SUTM20 map projection to monitor the periodic variations. Each year, the maximum and minimum coverage of the sea ice were found in late August and February in the study area, respectively. We also studied the sea ice distribution using ERS-1 altimeter data between $45-75^{\circ}W\;and\;55-81.5^{\circ}S$ to compare with the T/P Using the Valid/Invalid flag of the Ocean Product, we analyzed the sea ice distribution between March and August of 1995, which showed very good coherence with the T/P measurements. Our preliminary results showed that the altimeter measurements can be effectively used to monitor the distribution of the sea ice in the polar region. However, the size of radar footprint, typically 2-6km depending on the roughness of the sea surface, may be too big to monitor the sharp boundary between ice and water/land. If more other altimeter mission data with dense coverage such as Geosat GM are analyzed together, this limitation can be significantly improved. If we also combine other microwave remote sensing data such as radiometer, and SSM/I, the result will be significantly enhanced.

Comparison of Topex/Poseidon sea levels data and Tide Gause sea levels data from the South Indian Ocean (남인도양에서의 해수면에 대한 위성자료(Topex/Poseidon 고도계)와 현장자료(Tide Gauge 해면계)간의 비교)

  • 윤홍주;김상우;이문옥;박일흠
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.281-285
    • /
    • 2001
  • According to standard procedures as defined in the users handbook for sea level data processes, I was compared to Topex/poseidon sea level data from the first 350days of mission and Tide Gauge sea level data from the Amsterdam- Crozet- Kerguelen region in the South Indian Ocean. The comparison improves significantly when many factors for the corrections were removed, then only the aliased oceanic tidal energy is removed by oceanic tide model in this period. Making the corrections and smoothing the sea level data over 60km along-track segments and the Tide Gauge sea level data for the time series results in the digital correlation and RMS difference between the two data of c=-0.12 and rms=11.4cm, c=0.55 and rms=5.38cm, and c=0.83 and rms=2.83cm for the Amsterdam, Crozet and Kerguelen plateau, respectively. It was also found that the Kerguelen plateau has a comparisons due to propagating signals(the baroclinic Rossby wave with velocity of -3.9~-4.2cm/sec, period of 167days and amplitude of 10cm) that introduce temporal lags($\tau$=10~30days) between the altimeter and tide gauge time series. The conclusion is that on timescales longer than about 10days the RMS sea level errors are less than or of the order of several centimeters and are mainly due to the effects of currents rather than the effects of sterics(water temperature, density) and winds.

  • PDF

A Gaussian Jet Model for Deriving Absolute Geostrophic Velocity from Satellite Altimetry

  • Kim, Seung-Bum
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.610-614
    • /
    • 2002
  • Time-mean and absolute geostrophic velocities of the Kuroshio current south of Japan are derived from TOPEX/Poseidon altimeter data using a Gaussian jet model. When compared with simultaneous measurements from a shipboard acoustic Doppler current profiler (ADCP) at two intersection points, the altimetric and ADCP absolute velocities correlate well with the correlation of 0.55 to 0.74. The time-mean velocity is accurate to 1 cm s$^{-1}$ to 5 cm s$^{-1}$. The errors in the absolute and the mean velocities are similar to those reported previously far other currents. The comparable performance suggests the Gaussian jet model is a promising methodology for determining absolute geostrophic velocities, noting that in this region the Kuroshio does not meander sufficiently, which provides unfavorable environment for the performance of the Gaussian jet model.

  • PDF

Comparison and analysis between TOPEX/POSEIDON Altimeter data and In-Situ Tide Gauge Data in the Eastern Asian Marginal Seas (동아시아 주변해역에서의 TOPEX/POSEIDON 위성 고도자료와 Tide Gauge 현장자료 간의 비교 및 해석 연구)

  • 윤홍주
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.606-609
    • /
    • 2000
  • These results indicate that the low-Sequency signal of T/P data (with periods greater than 200 days) can be interpreted most safely. Similarly to the case of the T/P data, corrections were also applied to those of tide gauge counterparts. Hence, when the 200-day effect was filtered out, the agreement between T/P and TG data sets was optimized.

  • PDF

Variations of Sea Level and Sea Surface Temperature in Korean Seas by Topex/Poseidon and NOAA

  • Yoon, Hong-Joo;Kang, Heung-Soon;Lee, Bong-Sic;Jeong, Young-Deok
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.880-883
    • /
    • 2006
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

Variations of Sea Level and Sea Surface Temperature in Korean Seas by Topex/Poseidon and NOAA

  • Yoon, Hong-Joo;Kang, Heung-Soon;Cho, Han-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • Altimeter (Topex/Poseidon) and AVHRR (NOAA) data were used to study the variations and correlations of Sea Level (SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea (Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

Computation of Tides in the Northeast Asian Sea by Blending the Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계 자료를 이용한 북동 아시아 해역의 조석 산정)

  • Kim, Chang-Shik;Matsumoto, Koji;Ooe, Masatsugu;Lee, Jong-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • Tidal computations of $M_2,\;S_2,\; K_1$ and $O_1$ constituents in the northeast Asian sea are presented by blending the Topex/Poseidon (T/P) altimeter data into a hydrodynamic model with $5'{\times}5'$ resolution. A series of sensitivity experiments on a weighting factor, which is the control parameter in the blending method, are carried out using $M_2$ constituent. The weighting factor is set to be in inverse proportion to the square root of water depth to reduce noises which could occur in data-assimilative model by blending T/P data. Model results obtained by blending the T/P-derived $M_2,\;S_2,\; K_1$ and $O_1$ constituents simultaneously are compared with all T/P-track tidal data; Average values of amplitude and phase errors are close to zero. Standard deviations of amplitude and phase errors are approximately 2 cm and less than 10 degrees respectively. The data-assimilative model results show a quite good agreement with T/P-derived tidal data, particularly in shallow water region (h<250m). In deep water regions, T/P-derived tidal data show unreasonable spatial variations in amplitude and phase. The data-assimilative model results differ from T/P-derived data, but are improved to show reasonable spatial variations in amplitude and phase. In addition, the T/P-blended model results are in good agreement with coastal tide gauge data which are not blended into the model.

  • PDF

Variation of the Sea Level in the Korean seas Using Altimeter Data (TOPEX/POSEIDON)

  • Seo, Won-Chan;Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.430-433
    • /
    • 2008
  • A merged altimeter data products are used to estimate sea level variation in the East Sea between 1993 and 2006. The altimeter data show a high correlation coefficient (0.85) after applying gaussian low pass filter for 180days at Ulleung island. The both of Mukho coast and Ulleung island are minimal sea level in March to May and maximal in September to November. Sea level of Mukho coast is higher than that of Ulleung island during March to May, while Mukho coast is lower during September to November because the North Korea Cold Current flows along the coast line of Mukho. Generally sea level variation at Mukho coast and Ulleung island associated with seasonal variations.