In order to assist user's who are in the process of executing a search, a query expansion method suggests keywords that are related to an input query. Recently, several studies have suggested keywords that are identified by finding domains using a clustering method over the documents that are retrieved. However, the clustering method is not relevant when presenting various domains because the number of clusters should be fixed. This paper proposes a method that suggests keywords by finding various domains related to the input queries by using a community detection algorithm. The proposed method extracts words from the top-30 documents of those that are retrieved and builds communities according to the word graph. Then, keywords representing each community are derived, and the represented keywords are used for the query expansion method. In order to evaluate the proposed method, we compared our results to those of two baseline searches performed by the Google search engine and keyword recommendation using TF-IDF in the search results. The results of the evaluation indicate that the proposed method outperforms the baseline with respect to diversity.
Since realtime search words are centered on the fact that the search growth rate of an issue is rapidly increasing in a short period of time, it is not possible to express an issue that maintains interest for a certain period of time. In order to overcome these limitations, this paper evaluates the daily and hourly persistence of the realtime words that belong to the top 10 for a certain period of time and extracts the search word that are constantly interested. Then, we present the method of using the time series analysis and the neural network to know how the interest of the upper search word changes, and show the result of forecasting the near future change through the actual example derived through the method. It can be seen that forecasting through time series analysis by date and artificial neural networks learning by time shows good results.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.1075-1076
/
2012
인터넷의 발달로 데이터가 이질적이고 방대해점에 따라 사용자의 의도와 목적에 맞는 정보를 빠르고 정확하게 찾아내는 것이 어려워지고, 대용량의 데이터를 빠르게 검색 할 수 있는 효율적인 top k 질의 처리가 중요해 지고 있다. top k 질의 처리는 릴레이션에서 가장 높은 (또는 가장 낮은) 값을 가지는 k개의 튜플을 반환하는 방법이며, 그 중 Layer 기반 방법은 객체가 가지는 d개의 속성 값들을 d-차원의 공간상의 점 객체로 랩핑하여, layer들의 list를 생성 한다. 본 논문에서는 Layer 기반 법 중 skyline을 사용하여 layer을 생성하고 인덱스를 구축하는 기존 연구에 대해서 조사한다. 그리고 대표적인 방법인 모든 객체를 순차적으로 비교하는 BNL과 이의 비교 횟수를 감소시킨 SFS, 그리고 R-tree를 사용한 NN과 이의 계산 비용을 감소시킨 BBS에 대해 설명한다.
Proceedings of the Korea Information Processing Society Conference
/
2009.04a
/
pp.282-285
/
2009
대부분의 스카이라인 질의에 대한 연구는 완전한 데이터에 관하여 이루어지고 있다. 하지만, 우리가 웹이나 기타 다른 도구로 데이터베이스에 자료를 입력할 때는 null을 허용하는 부분이 존재한다. 현재 이런 불완전한 데이터를 처리하기 위한 많은 연구가 이루어지고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 기존에 제안되었던 불완전한 데이터를 처리하는 기법과 차원의 저주를 해결하기 위한 기법을 고려하여 이를 바탕으로 완전한 데이터와 동등하거나 혹은 더 좋을지도 모르는 데이터를 우선순위가 높은 순서대로 k(g)개 검색해주는 스카이라인 그룹 질의를 도입하고 이를 처리하는 방법을 제안한다.
In this paper, we propose a decoding method using a balanced binary tree and a canonical Huffman tree for efficient decoding of Huffman codes. The balanced binary tree scheme reduces the number of searches by lowering the height of the tree and binary search. However, constructing a tree based on the value of the code instead of frequency of symbol is a drawback of the balanced binary tree. In order to overcome these drawbacks, a balanced binary tree is reconstructed according to the occurrence probability of symbols at each level of the tree and binary search is performed for each level. We minimize the number of searches using a canonical Huffman tree to find level of code to avoid searching sequentially from the top level to bottom level.
Recently, there has been growing interest in skyline queries. Most of works for skyline queries assume that the data do not have null value. However, when we input data through the Web or with other different tools, there exist incomplete data with null values. As a result, several skyline processing techniques for incomplete data have been proposed. However, available skyline query techniques for incomplete data do not consider the environments that coexist complete data and incomplete data since these techniques deal with the incomplete data only. In this paper, we propose a novel skyline group processing technique which evaluates skyline queries for the environments that coexist complete data and incomplete data. To do this, we introduce the top-k(g) skyline group query which searches g skyline groups with respect to the user's dimensional preference. In our experimental study, we show efficiency of our proposed technique.
Journal of the Korean Operations Research and Management Science Society
/
v.33
no.4
/
pp.63-82
/
2008
The explosively growing attractiveness of the Web is commencing significant demands for a structuring analysis on various web objects. The larger the substantial number of web objects are available, the more difficult for the clients(i.e. common web users and web robots) and the servers(i.e. Web search engine) to retrieve what they really want. We have in mind focusing on the structure of web objects by introducing optimization models for more convenient and effective information retrieval. For this purpose, we represent web objects and hyperlinks as a directed graph from which the optimal structures are derived in terms of rooted directed spanning trees and Top-k trees. Computational experiments are executed for synthetic data as well as for real web sites' domains so that the Lagrangian Relaxation approaches have exploited the Top-k trees and Hop constraint resolutions. In the experiments, our methods outperformed the conventional approaches so that the complex web graph can successfully be converted into optimal-structured ones within a reasonable amount of computation time.
Online Q&A for the National Institute of the Korean Language provides expert's answers for questions about the Korean language, in which many similar questions are repeatedly posted like other Q&A boards. So, if a system automatically finds questions that are similar to a user's question, it can immediately provide users with recommendable answers to their question and prevent experts from wasting time to answer to similar questions repeatedly. In this paper, we set 5 classes of questions based on its topic which are frequently asked, and propose to classify questions to those classes. Our system searches similar questions by combining topic similarity, vector similarity and sequence similarity. Experiment shows that our method improves search correctness with topic classification. In experiment, Mean Reciprocal Rank(MRR) of our system is 0.756, and precision for the first result is 68.31% and precision for top five results is 87.32%.
In this paper, we have designed a region-based image retrieval system, FRIP(Finding Region In the Pictures). This system includes a robust image segmentation scheme using color and texture direction and retrieval scheme based on features of each region. For image segmentation, by using a circular filter, we can protect the boundary of round object and merge stripes or spots of objects into body region. It also combines scaled and shifted color coordinate and texture direction. After image segmentation, in order to improve the storage management effectively and reduce the computation time, we extract compact features from each region and store as index. For user interface, by the user specified constraints such as color-care / don't care. scale-care / dont care, shape-care / dont care and location-care / dont care, the overal/ matching score is estimated and the top Ie nearest images are reported in the ascending order of the final score.
Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.