• Title/Summary/Keyword: Top-down functional design

Search Result 17, Processing Time 0.031 seconds

A Study on the Functional Requirement Analysis for the Development of PDM System (제품정보관리 시스템 개발을 위한 기능 분석에 관한 연구)

  • 한관희;박찬우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.1
    • /
    • pp.42-56
    • /
    • 2002
  • Presented in this study is a top-down functional requirement analysis procedure and the desired functionalities for PDM system development, and the benefits of top-down approach over a conventional bottom-up approach is also shown. For the purpose of top-down requirement analysis for PDM system, this study proposes 4P modeling view. 4P modeling view is defined as a modeling perspective for classifying functional requirements and integrating product-related information objects that must be man-aged within PDM systems. Based on 4P modeling templates, benchmarking analysis of commercially major PDM products is conducted and as a result of this analysis, this study suggests desired functionalities for PDM system.

Framework of a CAD System to Support Design Process Modeling of Mechanical Products (기계 제품의 개념 설계를 위한 하향 설계 지원 CAD시스템의 개발)

  • 홍진웅;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.4
    • /
    • pp.359-372
    • /
    • 2000
  • Current CAD systems are good enough to be used as a tool to manipulate three-dimensional shapes. This is a very important capability to be owned by a design tool because a major portion of designers'activities is spent on the shape manipulation in the design detailing process. However, the whole design process involves a lot more than the, shape manipulation. Currently, these remaining tasks, mostly logical reasoning process for the function realization together with structure decomposition in the top-down manner, are processed in the designer's brain. To support the top-down functional design process of a mechanical product, a system integrating the functional, structural and geometrical aspects of a product design in a unified environment is presented. Using this system, a designer can perform function decomposition, structure decomposition, and geometry detailing, and function verification activities in parallel and the whole design process it modeled resultantly. Once the whole design process is modeled, any redesign task can be automatically performed with the verification of the desired functions.

  • PDF

Functional analysis of air transport mission (항공 수송 임무의 기능 분석에 관한 연구)

  • Song, Youn-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • Functional analysis of air transport mission is conducted to establish the performance requirements of the commercial transport designs. The analysis process begins by making a top-down analysis to the aircraft system level mission functions. Correctly interpreting the top-level performance requirements is the first step in designing and building an aircraft system. Each function and sub-function is allocated and examined to the aircraft level and flight operations phase to optimize the system performance and design requirements, such that these lower-level requirements can be traced back to the top-level requirements they are designed to fulfill. Special attention is given to making sure all interfaces, both internal and external, are addressed. The results are also in good resources of functional hazard assessment involved in certification processes.

  • PDF

A Study on Part Configuration Shape Synthesis for Process Planning in the Early Design Stage (제품개발 초기단계의 생산공정설계를 위한 기계부품의 외형형상 합성에 관한 연구)

  • 임진승;김용세;에릭왕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.899-904
    • /
    • 2003
  • Tight integration of product design and process planning in the early design stage would make bigger impact as wider spectrum of design and manufacturing alternatives can be pursued and evaluated. Thus the development of systematic computer-based support for this integration is desirable. For this integration and process planning in the early design stage. the systematic method to synthesize shape of part from functional requirements is crucial. This research presents the methods of functional decomposition from overall function or product and synthesizing shape of part based on functional relations extracted from functional decomposition using planetary gear transmission system as an example.

  • PDF

Genesis of Artificial Strains Based on Microbial Genomics

  • Kim, Sun-Chang;Sung, Bong-Hyun;Yu, Byung-Jo
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.15-19
    • /
    • 2001
  • Creating an artificial strain with a minimal gene set for a specific purpose is every biologist's dream. With the complete genome sequencing of more than 50 microorganisms and extensive functional analyses of their genes, it is possible to design a genetic blueprint for a simple custom-designed microbe with the minimal gene set. Two different approaches are being considered. The first 'top-down' approach is trimming the genome to a minimal gene set by selectively removing genes of an organism thought to be unnecessary based on microbial genomics. The second 'bottom-up' approach is to synthesize the proposed minimal genome from basic chemical building blocks. The 'top-down' approach starting with the genome of a well known microorganism is more technically feasible, whereas the bottom-up approach may not be attainable in the nearest future because of the lack of the complete functional analysis of the genes needed for a life. Here in this study, we used the top-down approach to minimize the E. coli genome to create an artificial organism with 'core' elements for self-sustaining and self-replicating cells by eliminating unnecessary genes. Using several different kinds of sophisticated deletion techniques combined with a p:1age and transposons, we deleted about 19% of the E. coli genome without causing any damages to cellular growth. This smaller E. coli genome will be further reduced to a genome with a minimal gene l;et essential for cell life. This minimized E. coli genome can lead to the construction of many custom-designed strains with myriad practical and commercial applications.

  • PDF

Functional analysis of Avionics system for an air transport mission (항공 수송 임무 수행을 위한 Avionics 시스템의 기능 분석)

  • Song, Yun-Sub
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.3
    • /
    • pp.40-50
    • /
    • 2009
  • Avionics system's function for an air transport mission is analysed. The starting point for designing a Avionics system is a clear understanding of the mission requirements and the requirement allocation by the top level aircraft system. Therefore, the analysis begins by making a top-down analysis to the aircraft missions. The baseline mission is divided into segments, and each segment is subjected to a detailed analysis to establish the requirements for the Avionics system. Special attention is given to capture the key aspects of interfaces, and to incorporate them into the design.

  • PDF

Effects of golf drive swing on multiple functional wear wearing (다기능성 웨어 착용이 골프 드라이브 스윙에 미치는 효과)

  • Kim, Jungwoo;Park, Sunkyung;Uh, Mikyung
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.4
    • /
    • pp.632-639
    • /
    • 2014
  • The purpose of this study was to verify the effect of drive swing on multiple functional wear wearing in golf. The subjects were 6 men ($22.67{\pm}0.82$ yrs, $175.42{\pm}3.42cm$, $78.75{\pm}4.78kg$), who had career each with at least 8 yers golf experience with right-hander. For kinemetical analysis, this study used equipments with 7 motion capture cameras (300Hz) and analysis program (Nexus1.5). The total time of the club head, displacement magnitude of the COM and swing plane were compared of according to functional wear wearing and non-weraing during golf drive swing. The results of the study are as follows. The total time of the club on wearing ($2.18{\pm}0.06sec$) was faster than non-wearing ($2.52{\pm}0.15sec$). Displacement magnitude of the COM on wearing ($4.06{\pm}0.67cm$) was shorter than non-wearing ($5.79{\pm}0.72cm$). Also, swing plane was found to be significantly different of 3 phase excepted BST-DS (back swing top-down swing) phase. AD-BST (address-back swing top) phase on wearing ($13.86{\pm}3.08cm$) decrease more than non-wearing ($20.82{\pm}3.99cm$), DS-IP (down swing-impact) phase on wearing ($6.25{\pm}1.35cm$) decrease more than non-wearing ($7.18{\pm}1.52cm$) and IP-FT (impact-follow though) phase on wearing ($7.93{\pm}2.09cm$) decrease more than non-wearing($9.68{\pm}2.02cm$). The multiple functional wear wearing was contribution to come close for one-plane, a long with consistency and accuracy on golf drive swing.

A Study on the Design of Network Management Architecture based on TMN Concept (TMN 개념을 응용한 통신망 관리구조 설계에 관한 연구)

  • 김영명;조영현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.170-182
    • /
    • 1994
  • With the evolution of telecommunications network, the operational enviroments of a morden telecommunication network are becoming more complex and diverse. Therefore. the design of NMA( Network Management Aechitecture) that pursues standardization and openness in order to accommodatae them actively will be required. In such a network environment which composes various and heterogeneous network elements, it is not easy to surpport efficiently TMN MSs(Management Services) because it has lack of interoperability among them. This paper proposes a top-down approach being taken to design a network management architecture with establishing the hierarchical relationships of management services based on ITU-TS(Telecommunication Standardization in Europe) TMN concept, and allocating MSC(Management Service Component) by TMN management layer, and analyzing the information flow between FAs(Functional Areas).

  • PDF

An Improved Method of FTA and Associated Risk Analysis Reflecting Automotive Functional Safety Standard (자동차 기능안전 표준을 반영하는 개선된 FTA 및 위험원 분석 기법)

  • Jung, Ho-Jeon;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.9-17
    • /
    • 2017
  • Ensuring the safety of automobiles and trains during system operation is regarded as indispensable due to the progress in unmanned operation. The automotive functional safety standard, ISO 26262, has been proposed to ensure the safe design of vehicles. This standard describes in detail the required risk analysis and evaluation procedure and safety measures, while appropriately reflecting the system design information. Therefore, much research has been done on the risk analysis procedure, wherein the design information is mostly extracted from physical components of similar systems already in operation, the information traced back to obtain constituent functions, and then methods of identifying risk sources are studied. This method allows the sources of risk to be identified quickly and easily, however if the design requirements are changed or systems are newly developed, others may be introduced which are not accounted for, thereby yielding mismatched design information. To resolve this problem, we propose a top-down analysis in order to utilize the system design information appropriately. Specifically, a conceptual system is designed to obtain the functions, which are then analyzed. Then, a function-based fault tree analysis is conducted, followed by a risk source analysis. In this paper, a case study of automotive safety is presented, revealing that the proposed method can analyze the risk sources with reduced possibility of omission by systematically reflecting the system design information.

Introduction to the Technology, Applications, Products, Markets, R&D, and Perspectives of Nanofoods in the Food Industry

  • Kim, Dong-Myong;Lee, Gee-Dong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.348-357
    • /
    • 2006
  • Nano is a unit that designates a billionth; accordingly nanotechnology could be described as the study and applications of the unique characteristics and phenomena of nanometer size materials. Applications of nanotechnology fall into two categories (one is top-down and the other is bottom-up). Currently, most products are the results of the top-down approach. Nanofoods have distinct functional characteristics stemming from the size, mass, chemical combinations, electrolytic features, magnetic properties of food sources at the nano level and which can be applied for safe absorption and delivery into the body. The greatest advantage of nanofood is that it permits the efficient use of small quantities of nutritional elements by increasing digestive absorption ability and by delivering natural elements without any change in their original characteristics. On the other hand, there are still unsolved problems, such as questions about safety and introduction of harmful material. The demand for new commercial food products is increasing, and commercial food producers are gradually combining nanotechnology and traditional food preparation methods. Nanofoods will improve our eating habits remarkably in the future. Tomorrow we will design nanofoods by shaping molecules and atoms. It will have a big impact on the food and food-processing industries. The future belongs to new products and new processes with the goals of customizing and personalizing consumer products. Nanotechnology is expected to be applied to not only foods themselves, but also to food packaging, production, safety, processing and storage. Also, it is believed that nanotechnology will be applied tracking finished products back to production facilities and even to specific processing equipment in those facilities. The aim of this study is the introduction of technology, applications, products, markets, R&D, and perspectives of nanofoods in the food industry.