• Title/Summary/Keyword: Top-coupling method

Search Result 37, Processing Time 0.027 seconds

Electron Transport of Low Transmission Barrier between Ferromagnet and Two-Dimensional Electron Gas (2DEG)

  • Koo, H.C.;Yi, Hyun-Jung;Ko, J.B.;Song, J.D.;Chang, Joon-Yeon;Han, S.H.
    • Journal of Magnetics
    • /
    • v.10 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • The junction properties between the ferromagnet (FM) and two-dimensional electron gas (2DEG) system are crucial to develop spin electronic devices. Two types of 2DEG layer, InAs and GaAs channel heterostructures, are fabricated to compare the junction properties of the two systems. InAs-based 2DEG layer with low trans-mission barrier contacts FM and shows ohmic behavior. GaAs-based 2DEG layer with $Al_2O_3$ tunneling layer is also prepared. During heat treatment at the furnace, arsenic gas was evaporated and top AlAs layer was converted to aluminum oxide layer. This new method of forming spin injection barrier on 2DEG system is very efficient to obtain tunneling behavior. In the potentiometric measurement, spin-orbit coupling of 2DEG layer is observed in the interface between FM and InAs channel 2DEG layers, which proves the efficient junction property of spin injection barrier.

Viscous fluid induced vibration and instability of FG-CNT-reinforced cylindrical shells integrated with piezoelectric layers

  • Bidgoli, Mahmood Rabani;Karimi, Mohammad Saeed;Arani, Ali Ghorbanpour
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.713-733
    • /
    • 2015
  • In this paper, viscous fluid induced nonlinear free vibration and instability analysis of a functionally graded carbon nanotube-reinforced composite (CNTRC) cylindrical shell integrated with two uniformly distributed piezoelectric layers on the top and bottom surfaces of the cylindrical shell are presented. Single-walled carbon nanotubes (SWCNTs) are selected as reinforcement and effective material properties of FG-CNTRC cylindrical shell are assumed to be graded through the thickness direction and are estimated through the rule of mixture. The elastic foundation is modeled by temperature-dependent orthotropic Pasternak medium. Considering coupling of mechanical and electrical fields, Mindlin shell theory and Hamilton's principle, the motion equations are derived. Nonlinear frequency and critical fluid velocity of sandwich structure are calculated based on differential quadrature method (DQM). The effects of different parameters such as distribution type of SWCNTs, volume fractions of SWCNTs, elastic medium and temperature gradient are discussed on the vibration and instability behavior of the sandwich structure. Results indicate that considering elastic foundation increases frequency and critical fluid velocity of system.

Comparative Study on Sloshing Impact Flows between PIV and CFD (슬로싱 충격현상 해석을 위한 모형실험과 수치해석 적용에 관한 비교 연구: PIV vs. CFD)

  • Yang, Kyung-Kyu;Kim, Jieung;Kim, Sang-Yeob;Kim, Yonghwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.154-162
    • /
    • 2015
  • In this study, experimental and numerical methods were applied to observe sloshing impact phenomena. A two-dimensional rectangular tank filled with water and air was considered with a specific excitation condition that induced a hydrodynamic impact without an air pocket at the top corner of the tank. High-speed cameras and a pressure measurement system were synchronized, and a particle image velocimetry (PIV) technique was applied to measure the velocity field and corresponding pressure. The experimental condition was implemented in a numerical computation to solve incompressible two-phase flows using a Cartesian-grid method. The discretized solution was obtained using the finite difference and constraint-interpolation-profile (CIP) methods, which adopt a fractional step scheme for coupling the pressure and velocity. The tangent of the hyperbola for interface capturing (THINC) scheme was used with the weighed line interface calculation (WLIC) method to capture the interface between the air and water. The calculated impact pressures and velocity fields were compared with experimental data, and the relationship between the local velocity and pressure was investigated based on the computational results.

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

Delamination Evaluation of Thermal Barrier Coating on Turbine Blade owing to Isothermal Degradation Using Ultrasonic C-scan Image (초음파 C-scan을 이용한 터빈 블레이드 열차폐코팅의 등온열화에 의한 박리 평가 기법)

  • Lee, Ho-Girl;Kim, Hak-Joon;Song, Sung-Jin;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.5
    • /
    • pp.353-362
    • /
    • 2016
  • Thermal barrier coating (TBC) is an essential element consisting of a super-alloy base and ceramic coating designed to achieve long operational time under a high temperature and pressure environment. However, the top coat of TBC can be delaminated at certain temperatures with long operation time. As the delamination of TBC is directly related to the blade damage, the coupling status of the TBC should be assured for reliable operation. Conventional studies of nondestructive evaluation have been made for detecting generation of thermally grown oxide (TGO) or qualitatively evaluating delamination in TBC. In this study, the ultrasonic C-scan method was developed to obtain the damage map inside TBC by estimating the delamination in a quantitative way. All specimens were isothermally degraded at $1,100^{\circ}C$ with different time, having different partial delamination area. To detect partial delamination in TBC, the C-scan was performed by a single transducer using pulse-echo method with normal incidence. Partial delamination coefficients of 1 mm to 6 mm were derived by the proportion of the surface reflection signal and flaw signal which were theoretical signals using Rogers-Van Buren and Kim's equations. Using the partial delamination coefficients, the partial delamination maps were obtained. Regardless of the partial delamination coefficient, partial delamination area was increased when degradation time was increased in TBC. In addition, a decrease in partial delamination area in each TBC specimen was observed when the partial delamination coefficient was increased. From the portion of the partial delamination maps, the criterion for delamination was derived.

Fabrication technology of the focusing grating coupler using single-step electron beam lithography (Single-step 전자빔 묘화 장치를 이용한 Focusing Grating Coupler 제작 연구)

  • Kim, Tae-Youb;Kim, Yark-Yeon;Sohn, Yeung-Joon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.976-979
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control' writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm), To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and $0.5{\times}0.5mm^2$ area, respectively, This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolpution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

  • PDF

A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain (도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구)

  • 김성수;홍성선;박지영;오창섭
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • A numerical simulation on a primary calcinator of porcelain was performed with using Fluent to calculate the heat efficiency by studying velocity vector and temperature profile according to variables such as the location of outlet and porcelain. Control-Volume based Finite Difference Method and Up-wind scheme are used for discretization of differential equation. SIMPLEC Algorithm and standard k-$\varepsilon$ turbulent model are selected to resolve the pressure-velocity coupling and the turbulent. The result of simulation showed that the whole velocity vector field in a calcinator was varied greatly according to the location of outlet. But the whole temperature profile at each zone was still high regardless of the location of outlet because of the radiation. But the temperature of a case with a outlet at sidepart of preheating or cooling zone was little high compared to the case with a outlet on the top of preheating zone. The velocity vector field and temperature profile in a calcinator were almost not affected by the location of porcelain, but the temperature inside a porcelain was much affected according to the place where it was located. The heat efficiency in a calcinator was 44.6% and the gas temperature in the outlet was about 1000 K.

  • PDF

Warpage Improvement of PCB with Material Properties Variation of Core (코어 물성 변화에 따른 인쇄회로기판의 warpage 개선)

  • Yoon Il-Soung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.2 s.39
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, warpage magnitude and shape of printed-circuit board in case that properties of core and thickness of solder resist are varied are investigated. The cause of warpage is coefficient of thermal expansion differences of stacked materials. Therefore, we need small difference of coefficient of thermal expansion that laminated material, and need to decrease asymmetric of top side and bottom side in structure shape. Also, we can control occurrence of warpage heightening hardness of core in laminated material. Composite material that make core are exploited in connection with the structural bending twisting coupling resulting from directional properties of fiber reinforced composite materials and from ply stacking sequence. If we use such characteristic, we can control warpage with change of material properties. In this paper, warpage of two layer stacked chip scale package is investigated, and evaluate improvement result using an experiment and finite element method tool.

  • PDF

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF