• 제목/요약/키워드: Top Bracing

검색결과 32건 처리시간 0.023초

변단면보의 개선된 모멘트 구배 수정계수 (Modified Moment Gradient Correction Factor of Nonprismatic Beams)

  • 박종섭
    • 한국강구조학회 논문집
    • /
    • 제18권2호
    • /
    • pp.191-201
    • /
    • 2006
  • 본 연구에서는 비지지길이 양단에 계단식 단면 변화를 가지는 보에 대해 횡-비틀림 좌굴강도를 합리적으로 산정하기 위 한 새로운 모멘트 구배 수정계수를 개발, 제안하였다. 제안된 식은 건물과 교량에 사용된 보의 양단에 개별 지지만 존재하는 경우와, 슬래브 등이 타설되어 상부플랜지에 연속적인 횡방향 지지가 존재하는 경우로 구분되어 연구되었다. 새로운 모멘트 구배 수정계수식을 개발하기 위하여 유한요소해석 프로그램이 활용되었으며, 제안식은 기존에 발표된 식들과 비교 분석되었다. 구조물에 발생가능한 대부분의 하중조건이 본 연구에 고려되었으나, 본 논문에서는 하나의 집중하중과 등분포하중이 작용하는 경우를 중점으로 기술되었다. 본 연구에서는 비지지길이와 보작용시 적용 가능하도록 식이 개발 제안되었다. 본 논문을 통해 제안된 새로운 모멘트 구배 수정계수식들은 건물과 교량의 설계 및 유지관리 기술자들이 간편하고 경제적인 설계를 유도하는 데 크게 기여할 것이다.

Construction Workers Fall Accidents from Scaffolding in Gaza Strip

  • Enshassi, Adnan;Shakalaih, Sobhi
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.65-69
    • /
    • 2015
  • The aim of this paper is to identify and rank the main causes of fall accidents from scaffolding according to their relative importance as perceived by project managers and site engineers in construction projects in the Gaza Strip. A total of 50 questionnaires were distributed to project managers and site engineers, 35 questionnaires were received yielding 70% response rate. A total of 33 factors that cause fall accidents in scaffolding were identified through a literature review and consolidated by a pilot study. These factors were categorized into six groups: factors related to erection, factors related to the staff (Scaffolders), factors related to loads, factors related to the personal safety, factors related to the workers behavior, factors related to the personal competencies. The results indicated that factors related to the workers behavior are the major factors that caused fall accidents from scaffolds. The results revealed that the top ranked factors which caused falls accidents from scaffolding were: absence of personal protective equipment (PPE), missing ladders, wind loads, disguised the design code, lack of proper assembly or inspection, overhead tools and materials, climbing and neglect using ladders, lack of guardrails, missing bracing and working during fatigue. These findings would help contractors to understand the top factors that caused fall accidents so that they can take them into consideration in safety planning in order to minimize the possibility of their occurrences.

  • PDF

The U-frame concept to assess the stability of chords of Warren-truss bridges with independent cross-beam decks

  • Wojciech Siekierski
    • Steel and Composite Structures
    • /
    • 제52권1호
    • /
    • pp.77-87
    • /
    • 2024
  • Analytical methods for assessment of the out-of-plane buckling of unbraced top chords of truss bridges may look obsolete while comparing them to finite element analysis. However they are, usually, superior when rapid assessment is necessary. Analytical methods consider the top chord as a bar on elastic supports provided by bracing (Holt, Timoshenko). Correct assessment of the support elasticity (stiffness) is crucial. In the case of truss bridge spans of traditional structural layout (cross-beams at the truss chord nodes only), the elasticity may be set based on the analysis of the, so called, U-frame stiffness. Here the analyses consider the U-frame itself (a pair of verticals and a cross-beam) or the U-frame with adjacent diagonals or the pair of diagonals (in the absence of verticals) and the members of the bottom chord in the adjacent panels. For all the cases, the stability analysis of the chord as a bar in compression is necessary. Unfortunately, the method cannot be applied to contemporary truss bridges without verticals, that usually have independent cross-beam decks (the cross-beams attached to truss chords at their nodes and between them). This is the motivation for the analysis resulting in the method of setting the stiffness of the equivalent U-frame for the aforementioned truss bridges. Truss girders of both, gussetless and gusseted, joints are taken into account.

선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구 (An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine)

  • 이돈출;주기세;남택근;김상환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

타워크레인의 횡지지 최적설계 알고리즘 개발 (The Optimization Algorithm for Wall Bracing Supports of Tower Cranes)

  • 이현민;호종관;김선국
    • 한국건설관리학회논문집
    • /
    • 제11권1호
    • /
    • pp.130-141
    • /
    • 2010
  • 예측 불가능한 자연 재해를 포함하여 현장관리자의 장비 설치 및 운영 시의 경험부족은 타워크레인과 같은 대형양중장비에 심각한 사고의 원인으로 작용한다. 국내에서는 2003년 태풍 "매미"의 영향으로 불안정한 지지구조를 가진 약 50여대의 타워크레인이 전복되는 사고가 발생하였으며, 아직까지 많은 현장관리자는 대형양중장비에 대한 설치 및 운영에 대한 이해가 부족하여 예산을 실행하는 데 비효율적인 모습을 보이고 있다. 또한, 최근 들어 초고층 건설 프로젝트가 급격하게 증가함으로써 타워크레인의 사용빈도 또한 증가하고 있으므로, 이로 인한 타워크레인 기초판의 지지 안정성뿐만 아니라 횡지지 안정성을 검토하는 것이 요구되고 있다. 본 연구의 목적은 타워크레인의 횡지지 최적설계 알고리즘을 개발하는 것으로, 타워크레인 횡지지의 구조적인 안정성을 확보하고 비용이 최소화되는 부재조합을 선택하여 현장에 적용 가능하게 한다. 이는 향후 현장관리자의 타워크레인 설치 및 운영 업무를 효율적으로 증진시킬 것이다.

추가 상재하중을 받는 지중박스구조물의 우각부에 대한 프리플렉스 부재를 이용한 보강공법 (Strength Method Using Pre-flexed Members for the Corner of Underground Box Structures under Additional Surface Load)

  • 정지승;이진혁;김기암
    • 한국안전학회지
    • /
    • 제31권5호
    • /
    • pp.102-108
    • /
    • 2016
  • This paper presents a new strength method of underground box structures under additional surface load. An L-bracing using pre-flexed steel member threads called the "Pre-flex strength method" is used to improve capacity of the RC box structure under earth pressure due to additional surface load. The pre-flexed steel member is fixed the top and bottom of the structure after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. 3 types of underground RC box structure were used; $2.0m{\times}2.0m$, $3.0m{\times}3.0m$ and $4.0m{\times}4.0m$. For the performance evaluation, structure analysis were performed on moment and shear resisting structures with and without pre-flex strength method. Numerical results confirmed that the proposed strength member system installed on underground RC box structures enhanced the strength capacity. The feasible region of the proposed pre-flex strength method in accordance with the earth pressure due to additional surface depth was evaluated.

인접한 쌍둥이 구조물의 진동제어를 위한 점성 감쇠기의 다목적 최적 분포 (Multi-Objective Optimal Distributions of Viscous Dampers for Vibration Control of Adjacent Twin Structures)

  • 류선호;옥승용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.61-67
    • /
    • 2018
  • This study proposes a new vibration control approach for adjacent twin structures, which is termed as viscous damper asymmetric coupling system in this paper. The proposed system takes a concept that the diagonal bracing viscous dampers are asymmetrically distributed in two buildings to break the behavior symmetry of the twin buildings and then the coupling viscous damper is additionally installed at the top floor of the two buildings to couple both buildings and interactively transfer the asymmetric behavior-caused damping forces into both buildings. These asymmetric damping distributions and interacting damping forces of the connection damper efficiently suppress the overall vibration of the damper-coupled adjacent twin buildings efficiently. Genetic algorithm (GA) based multi-objective optimization technique is adopted for optimal design of the proposed system. In the numerical example of adjacent twin 10-story building structures, the conventional control approach, that is, uniform damping distribution system (UDS) is also taken into account for comparison purpose. The optimization results verify that the proposed system either can improve the control performance over the UDS with the same damping capacity, or can save the damping capacity significantly while maintaining the similar level of control performance to the UDS.

도심지 옹벽 상단에서의 수평변위에 관한 사례분석 (The Analysis of Lateral Movement at the Top of Retaining Wall in the Downtown Area)

  • 배윤신
    • 한국지반환경공학회 논문집
    • /
    • 제10권3호
    • /
    • pp.63-71
    • /
    • 2009
  • 대도시에서의 공사는 외부방향이 아닌 상부로 진행되기 때문에 현장의 벽면 움직임은 매우 중요하다. 고층 구조물은 주차장을 위한 여분의 공간 확보뿐 아니라 건물의 잠재적 침하를 줄이기 위하여 일반적으로 깊은 굴착을 수반한다. 이러한 대형 굴착은 깊은 심도에 따른 횡방향 지중압력에 견디기 위한 견고한 브레이싱 시스템을 필요로 한다. 벽체 움직임은 잠재적인 인접 구조물의 침하를 허용하기 때문에 sheetpile 이나 diaphragm wall과 같은 옹벽구조물의 변형을 예측하는 방법은 매우 중요하다. 사례들을 분석하고 측정된 벽체 변형은 경험적 도표로부터 예측된 값들과 비교되었다.

  • PDF

Steel hexagonal damper-brace system for efficient seismic protection of structures

  • Mohammad Mahdi, Javidan;Jinkoo, Kim
    • Steel and Composite Structures
    • /
    • 제45권5호
    • /
    • pp.683-695
    • /
    • 2022
  • Conventional braces are often used to provide stiffness to structures; however due to buckling they cannot be used as seismic energy dissipating elements. In this study, a seismic energy dissipation device is proposed which is comprised of a bracing member and a steel hysteretic damper made of steel hexagonal plates. The hexagonal shaped designated fuse causes formation of plastic hinges under axial deformation of the brace. The main advantages of this damper compared to conventional metallic dampers and buckling-restrained braces are the stable and controlled energy dissipation capability with ease of manufacture. The mechanical behavior of the damper is formulated first and a design procedure is provided. Next, the theoretical formulation and the efficiency of the damper are verified using finite element (FE) analyses. An analytical model of the damper is established and its efficiency is further investigated by applying it to seismic retrofit of a case study structure. The seismic performance of the structure is evaluated before and after retrofit in terms of maximum interstory drift ratio, top story displacement, residual displacement, and energy dissipation of dampers. Overall, the median of maximum interstory drift ratios is reduced from 3.8% to 1.6% and the residual displacement decreased in the x-direction which corresponds to the predominant mode shape of the structure. The analysis results show that the developed damper can provide cost-effective seismic protection of structures.

지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석 (Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions)

  • 옥승용;권오용;백신원
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.