• Title/Summary/Keyword: Top Bracing

Search Result 32, Processing Time 0.027 seconds

Study on Effective Arrangement of Main Engine Top-Bracing (메인 엔진 탑-브레이싱의 효과적 배치에 관한 연구)

  • Choung, Joon-Mo;Min, Dug-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.289-298
    • /
    • 2011
  • This paper provides procedures to effectively determine arrangement of hydraulic type top-bracings, which are popular for the main engine of the mid and large sized commercial vessels. Analyzing the operation mechanism of hydraulic top-bracing, ideal unified nonlinear stiffness curve is presented for linear frequency response analysis and nonlinear transient response analysis. Nonlinear stiffnesses of the curve are determined based on the regression analysis of test results. It is noted from linear frequency response analysis, initial setting pressure is most important among the setting values of the other stiffness intervals. From transient response analyses for two top-bracing arrangement scenarios, it is recognized that, as far as initial setting pressure is well controlled for the concerning vessels, only two top-bracings are enough to suppress H-mode excitation forces from main engine.

A study on vibration control of the engine body for a large scale diesel engine using the semi-active controlled hydraulic type of top bracing (준능동형 유압식 톱브레이싱을 이용한 선박용 저속 2행정 디젤엔진의 본체 진동제어)

  • Lee, Moon-Seek;Kim, Yang-Gon;Hwang, Sang-Jae;Lee, Don-Chool;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Nowadays, as part of an effort to increase the efficiency of propulsion shafting system, the revolution of the main diesel engine in CMCR(Contract Maximum Continuous Rating) is reduced whereas the stiffness of hull structure supporting the main diesel engine is relatively flexible. However, vibration problems related with resonant response of main diesel engine are increasing although top bracing is installed between the main diesel engine and the hull structures to increase natural frequency of engine body above CMCR to avoid resonant phenomenon. In this study, the dynamic characteristic of top bracing is reviewed by analyzing measuring results of general cargo ships which apply the hydraulic type instead of the friction type to control the natural frequency and the vibration of the engine body. Moreover, considering the vibration characteristic of the engine body and the hydraulic type of the top bracing by varying the number of top bracing, authors suggest the more effective way to control the vibration of the engine body despite of lower stiffness of the hull structure than in the past when the hydraulic type of top bracing is used.

Lateral buckling of beams with top bracing

  • Park, Jong-Sup;Kang, Young-Jong
    • Structural Engineering and Mechanics
    • /
    • v.16 no.5
    • /
    • pp.613-625
    • /
    • 2003
  • This paper presents the lateral-torsional buckling (LTB) of beams or girders with continuous lateral support at top flange. Traditional moment gradient factors ($C_b$) given by AISC in LRFD Specification for Structural Steel Buildings and by AASHTO in LRFD Bridge Design Specifications were reviewed. Finite-element method buckling analyses of doubly symmetric I-shaped beams with continuous top bracing were conducted to develop new moment gradient factors. A uniformly distributed load was applied at midheight and either or both end moments were applied at the ends of beams. The proposed solutions are simple and accurate for use by engineers to determine the LTB resistance of beams.

Equations for Calculating Lateral-Torsional Buckling Capacity of H-Beam with Continuous Lateral Top-Flange Bracing (상부플랜지 연속 횡지지에 따른 초간편 H형강의 횡-비틀림 좌굴강도식 비교에 관한 연구)

  • Park, Jong-Sup;Lee, Son-Ho;Yoon, Ki-Young;Park, Jeong-Ung;Kim, Snag-Seup
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.437-440
    • /
    • 2007
  • Design equations for calculating the lateral-torsional buckling moment resistances of I-section beams with continuous lateral top-flange bracing subjected to several loading conditions are investigated based on elastic finite-element analyses. The equations presented in this study are compared with current moment gradient modifiers presented by other researchers and specifications. The equation suggested in the SSRC Guides(1998) has a good agreement with the results of finite-element analyses. The moment gradient correction factors proposed in the SSRC Guides(1998) should be easily used to calculate the lateral-torsional buckling moment resistance of I-beams with continuous lateral top-flange bracing.

  • PDF

Dynamic Modeling and Model Reduction for a Large Marine Engine

  • Kim, Chae-Sil;Jung, Jong-Ha;Park, Hyung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.520-525
    • /
    • 2003
  • This article provides a dynamic modeling methodology of engines to be accurate with a small number of degrees of freedom for an active vibration control using a top bracing. First. a finite element (FE) model for the engine structure is constructed so that the size of model is as small as possible where the dynamic characteristics of engine are ensured. Second. a technique is studied to obtain the exact mass and stiffness matrices of the FE model. The size of matrices from the FE model is still too large to apply. Finally, a model reduction is. therefore. conducted to make an appropriate dynamic model for designing and simulating a top bracing. In this article, a dynamic model of a large 9 cylinder engine is constructed and reviewed by comparing its natural frequencies and steady state reponses with those of experimental data provided by manufacturer.

Transverse vibration reduction at navigation bridge deck of the shuttle tanker using structural intensity analysis (진동 인텐시티 해석을 통한 원유운반선의 거주구 횡방향 진동 저감 연구)

  • Kim, Ki-Sun;Kim, Heui-Won;Joo, Won-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.251-255
    • /
    • 2012
  • Structural intensity has been mainly utilized to identify vibration energy flow in a vessel. In this paper, the structural intensity of a shuttle tanker subjected to H-moment of the main engine was calculated using a finite element model. From the analysis, it was found that the top-bracing elements, which support the main engine onto the hull structure to prevent the excessive transverse vibration of the main engine, play the role of the dominant path and sink for vibration energy flow from the main engine. Therefore, the structural intensity was controlled by the modification of stiffness and damping characteristics of the top-bracing elements. As a result, it is observed that the transverse vibration level at the center of navigation bridge deck decreased after the control of structural intensity.

  • PDF

Experimental Study on the Top- Lateral Bracing of U-Type Steel Box Girders Using Real Size Specimen: Torsional Stiffness (실물모형 시험를 이용한 U형 강박스거더의 상부 수평브레이싱에 관한 실험적 연구: 비틂강성)

  • Shim, Nak Hoon;Park, Young Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.447-456
    • /
    • 2006
  • In this study, a torsional test for U-type steel box girders was performed to observe the effects of the kind of panel for top lateral walateral bracings on the torsional behavior of the U-type steel girder system. For the structural tests, the test specimen with a two-thirds scale of the system actually constructed in the field was used. In the torsional test to observe the efects of top lateral bracings, the most economical arrangement of the top lateral bracing was found to be the panel width to length ratio of 1:1.5 with the inclined angle of $40^{\circ}$.

Parametric Study on Curved Tub Girders for Varying Radii of Curvature (곡선 개구제형 거더의 곡률에 따른 매개변수 해석연구)

  • Kim, Jong-Min;Han, Taek-Hee;Choi, Jun-Ho;Choi, Byung-Ho;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.175-188
    • /
    • 2012
  • A parametric study for varying the radii of curvature is performed with a curved tub girder bridge having three continuous spans. The bracing forces of top lateral bracings from the results of numerical equations are compared to those of 3-dimensional finite element analyses. New modifying factors applicable in computing the nominal member forces of top lateral bracings were suggested. The numerical equations were derived based on one girder system, and it is shown that the numerical equations exhibit some errors compared with 3D FEA results. The main reason for this phenomenon lies on the number of girders. The twin girder system has an external cross-beam between inner and outer girder. It also has larger lateral stiffness than the single girder system. Finally, the distributions by the torsion, bending, distortion, and lateral loading of the top lateral bracing forces were presented in this paper.