• 제목/요약/키워드: Tooth Profile

검색결과 237건 처리시간 0.025초

유압모터에 사용되는 제로터의 설계 및 해석 (Design and Analysis of Gerotor for Hydraulic Motors)

  • 이성철;이성남
    • Tribology and Lubricants
    • /
    • 제11권2호
    • /
    • pp.63-70
    • /
    • 1995
  • The analytical design method of gerotor profile, based on an envelope of a family of curves, is proposed. Analysis to calculate the flow rate and the torque capacity of a gerotor set are presented. The influence of the circular tooth radius and the amount of eccentricity on the configuration of a gerotor has been explored in this paper. The variation of the inlet volume and the fluctuation of the generated torque are also analyzed.

로보트용 내접 유성식 감속기의 설계에 대한 연구 (A Study on the Design of Planocentric Torque Driver used in Industrial Robot)

  • 이성철;오박균;권오관
    • Tribology and Lubricants
    • /
    • 제3권2호
    • /
    • pp.72-80
    • /
    • 1987
  • A planocentric torque driver comprises a stationary internal gear with the teeth of a circular concave profile and an external gear of an epitrochoid curve. The contact mechanism of the teeth is examined and analyzed by means of computer simulation. Analyses of load variation on the tooth and strength of appliance is carried out. And the output device is examined. Finally, the design of a 59:1 reduction ratio torque driver is presented.

Simulation of Meshing for the Spur Gear Drive with Modified Tooth Surfaces

  • Seol, In-Hwan;Chung, Soon-Bae
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.490-498
    • /
    • 2000
  • The authors have proposed methods (lead crowning and profile modification) for modifying the geometry of spur gears and investigated the contact pattern as well as the transmission errors to recommend the appropriate amount of modification. Based on the investigation, dynamic load of the modified spur gear drive has been calculated, which is helpful to predict the life of the designed gear drive. Computer programs for simulation of meshing, contact and dynamics of the modified spur gears have been developed. The developed theory is illustrated with numerical examples.

  • PDF

제로터 유압 모터의 치 접촉 응력 해석 (Analysis of Tooth Contact Stress of Gerotor Hydraulic Motors)

  • 김충현;김두인;안효석;정태형
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.164-170
    • /
    • 1999
  • Gerotor is widely used as a hydraulic pump or motor, by virtue of its volume changing ability. Performance deterioration of a gerotor hydraulic motor mainly due to the wear come from the contact between inner rotor with trochoidal curve and outer rotor with circular arc profile. This research covers the basic investigation about the contact forces of a gerotor hydraulic motor using analytic method. The influence of the eccentricity and the radius of circular arc teeth on the contact stress was evaluated.

플라스틱기어의 마멸특성에 관한 고찰 (Wear Characteristics of Plastic Pinion Against Steel Gear)

  • 김충현;김영민;안효석;정태형
    • Tribology and Lubricants
    • /
    • 제16권5호
    • /
    • pp.324-331
    • /
    • 2000
  • Wear characteristics of Plastic and Nylon pinions against steel gear were studied to gain a better understanding of their tribological behaviors. Wear tests were conducted with power circulating gear test rig under dry contact conditions. Specific wear rates were measured as a function of applied load and the number of revolution. The worn teeth surfaces were examined with a profile projector and a camera. Nylon pinion showed lower specific wear rates than acetal pinion, but suffered teeth breakage under high load per unit tooth width. The dominant wear mechanisms found were adhesion and abrasion.

마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구 (Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit)

  • 장정환;진진;김동선;우위팅;류성기
    • 한국기계가공학회지
    • /
    • 제18권6호
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.

RRP 시스템의 피팅수명 (Pitting Life for RRP System)

  • 김창현;남형철;권순만
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.387-393
    • /
    • 2012
  • 본 논문에서는 기존 랙-피니언 시스템의 랙 치형을 핀 또는 롤러로 대체한 롤러 랙 피니언 (RRP) 시스템의 표면피로 향상방안을 고찰하였다. 우선 전위계수(profile shift coefficient)를 고려하여 RRP 시스템의 캠 피니언(cam pinion)에 대한 엄밀 치형설계 방법 및 언더컷 방지 조건을 소개하였고, 이를 바탕으로 설계인자의 변화에 따른 하중 및 하중응력계수(load stress factor)의 변화를 검토하였다. 이를 통해 RRP 시스템의 표면 내구성을 향상시킬 수 있는 방안으로 전위계수의 증가가 효과적임을 알 수 있었다.

Design Improvement of Mechanical Transmission for Tracked Small Agricultural Transporters through Gear Strength Analysis

  • Kim, Hong-Gon;Jo, Yeon-Ju;Kim, Chul-Soo;Han, Yong-Ho;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제41권1호
    • /
    • pp.1-11
    • /
    • 2016
  • Purpose: The gear strength of a new mechanical transmission designed to increase the loading weight of small 4.8 kW tracked agricultural transporters was analyzed. Design improvements to increase the gear strength and reduce the gear weight were proposed after examining the parameters. Methods: Sixteen operators from three regions were surveyed to obtain the usage profile of small 4.8 kW transporters. Gear strength was evaluated by calculating contact stress and tooth root stress using commercial software following ISO 6336. Results: From the strength calculation for each gear pair, contact stress smaller than tooth root stresses were produced in all gear pairs. The safety factors in most cases exceeded 1.0, except in the case of gear pair II in group II. The design life of the transporter using gear pair II in group II was 42% under harsh conditions-thus, this design life needs improvement. A robust design was proposed by examining the relevant parameters (face width and profile shift coefficient) to increase the design life of the transporter. In addition, a lightweight design for gear pair I in group II that was considered overdesigned was proposed by examining the face width to reduce the weight of the drive gear by 42% and that of the driven gear by 30%. Conclusions: The Safety factor for the design life was examined through a gear strength analysis. After examining the relevant parameters, conditions for strength improvement were proposed to increase design life or adjust overdesigned gear. However, load conditions differ depending on the working conditions or user's preferences; therefore, it is necessary to conduct further studies in various regions.