• Title/Summary/Keyword: Tool steels

Search Result 147, Processing Time 0.025 seconds

Corrosion initiation time models in RC coastal structures based on reliability approach

  • Djeddi, Lamine;Amirat, Abdelaziz
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.149-159
    • /
    • 2020
  • The present work proposes new engineering models for determining corrosion initiation time in concrete reinforcing steels in marine environment. The models are based on Fick's second law that is commonly used for chloride diffusion. The latter is based on deterministic analyses involving the most influencing parameters such as distance of the concrete structure from the seaside, depth of steel concrete cover, ambient temperature, relative humidity and the water-cement ratio. However, a realistic corrosion initiation time cannot be estimated because of the uncertainties associated to the different parameters of the models. Therefore a reliability approach using FORM/SORM method has been applied to develop the proposed engineering models integrating a limit state function and a reliability index β. As a result, the corrosion initiation time is expressed by new exponential engineering models where the uncertainties are associated to the model parameters. The main emerging result is a realistic decision tool for corrosion planning inspection.

The evaluation of friction factor according to materials and lubricants (재료 및 윤활제에 따른 전단 마찰 상수값과 평가)

  • 김동진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.119-124
    • /
    • 1999
  • Quantitative evaluation of the tribological conditions at the tool-workpiece interface in metal forming is usually accomplished by the ring-compressinon. test This paper describes an experimental investigation into shear friction factor under cold and hot forming conditions according to materials and lubricants using the ring compression test. Six different materials and five different lubricants were applied in the experiments. calibration curves with the friction coefficient were obtained using FEM analysis and verified by the verified by the experimental results. The influence of materials and lubricants level on friction are discussed. In the ring compression test the shear friction factor has a different from steels and aluminum water base graphite lubricants on cold working conditions and hot working conditions.

  • PDF

The Effects of Sputtering conditions in Pre Sputtering on the Formation Behavior of Nitride Layer in the Ion Nitriding of Stainless Steel (초기 스퍼터링조건이 스테인리스강의 이온질화시 지로하층 형성거동에 미치는 영향)

  • 최상진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.197-203
    • /
    • 1999
  • Stainless steels in general has passive film having strong corrosion resistance on surface. Therefore it must be necessarily removed by etching in mixing solution of sulfuric and chloric acid before Nitriding treatment. But in the ion nitriding, nitride layer was easily formed because passive film was removed without difficult by sputtering effect. The removal extent of these passive films was greatly effected by gas mixing ratios and pressure and holding times of pre sputtering factors in pre sputtering stage. As a results of experiment it has been known that pre sputtering pressure and holding time was not nearly effective on the formation behavior of nitride layer. But when A/H2 gas mixing ratios was 1/2 (vol%) was the most effective of the all pre sputtering conditions. It was resulted from the combination of mechanical reaction byArgon bombardment and chemical reaction by reduction of hydrogen on the passive film.

  • PDF

A Study on the Surface Intigrity of Grinding of Ceramics (세라믹연삭에 있어서 표면품위에 관한 연구)

  • Ha, Sang-Baek;Lim, Jong-Go;Kim, Sung-Huen;Choi, Whan;Lee, Jong-Chan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.337-342
    • /
    • 2000
  • Experimental investigations were carried out to find the characteristics of grinding of ceramics. Grinding mechanisms of ceramics were inspected through the microscopic examination. It has been found that the specific grinding energy of ceramics is relatively low as compared to that of steels. The specific grinding energy affects the surface roughness and the residual stress of ground surface. The experimental results indicate that the rougher surface finish and higher compressive residual stress are obtained at lower specific grinding energy. The surface roughness and the residual stress of the ground surface have significant effects on the strength of ground piece of ceramics.

  • PDF

The Laser hardening Characteristics of the Alloy Tool Steels STD11 (금형용 합금공구강 STD11의 레이저 표면경화 특성)

  • Cho, Y.M.;Kim, J.D.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.6 no.4
    • /
    • pp.230-236
    • /
    • 1993
  • The laser beam hardening has been experimentally tried to find the hardened characteristics of STD11. Experiment was performed on the optimum hardening condition with 2kW $CO_2$ laser. The microstructure of the hardened layers was observed using the microscope. The hardened zones exhibits very high Vickers microhardness of 720 Hv, however, the deoxidation was observed under the surface of hardened area. The case depth of hardened zones is about 0.6mrn and case width is 4mm. FEM-simulation on laser surface hardening of STD11 steel are described. With the proper assumption of the absorbed energy density, the calculated case depth and width in 2 kW $CO_2$ laser hardening were in good agreement with the experimental result. It was found that there is optimum absorbed energy density of STD11.

  • PDF

Effect of Spraying Conditions in Flame Spraying of Ni-Cr Base Self Fluxing Alloy on Mild Steel (가스용사에 의한 Ni-Cr 기 자용성합금 용사 의 특성에 미치는 용사조건의 영향)

  • 배종규;박경채;정인상
    • Journal of Surface Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.26-42
    • /
    • 1989
  • It has between investigated that the optimum spaying conditions, such as, spraying distance, fusing temperature and fusing time, ect, in a Ni-cr base self fluxing alloy sprayed on the mild steel substrate by oxygen-acetylenc flame spraying. Sprayed specimens on various conditions were fuused in a vacuum furnace and the results were as follows. The optimum spraying condition for excellent coating layer are obtained under spraying distances, fusing temperature and fusing and time ; 180~240mm,1050~110$0^{\circ}C$and 15~30min, respectively. The adhesive strength and surface hurface hardness of the as sprayed specimens were very low by mechanical bonding becaus of the diffusion layer during process. The carbides and borides and formed in the sprayed coating layer and densification of the layer was resulted from the elimination of pores and oxides. The hardness of sprayed coating layer, particularly in the high temperature, was superior to ordinary tool steels.

  • PDF

Optimization of Process Parameters for EDM using Taguchi Design (Taguchi법에 의한 방전가공의 공정변수 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.78-83
    • /
    • 2015
  • The method of electrical discharge machining (EDM), one of the processing methods based on non-traditional manufacturing procedures, is gaining increased popularity, since it does not require cutting tools and allows machining involving hard, brittle, thin and complex geometry. Modern ED machinery is capable of machining geometrically complex or hard material components, that are precise and difficult-to-machine such as heat treated tool steels, composites, super alloys, ceramics, etc. This paper reports the results of an experimental investigation by Taguchi method carried out to study the effects of machining parameters on material surface roughness in electric discharge machining of SM45C. The work material was ED machined with graphite and copper electrodes by varying the pulsed current, voltage and pulse time. Investigations indicate that the surface roughness is strongly depend on pulsed current.

Performance of a Surface Densified P/M Gear for a Passenger Car Gear Box

  • Rau, Gunter;Sigl, Lorenz S.;Mork, Gerold;Wattenberg, Frank
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.389-390
    • /
    • 2006
  • Selective surface densification is a tool for improving the mechanical properties of PM steels, such that the requirements for highly loaded gears can be matched. This paper describes the manufacturing and the properties of a helical P/M gear. The gear performance was evaluated on a 3-shaft back to back test rig, on a load bearing test rig and on a sound test bench. The results of these tests are presented and compared to data obtained from solid steel gear with identical geometry and surface quality. This comparison indicates that P/M gears have a load bearing capacity and noise level which are both well comparable to solid steel gears.

  • PDF

A Study on the Sintering Behavior of T42 High Speed Steel by Powder Injection Molding (PIM) Process (분말 사출성형법으로 제조된 T42 고속도 공구강의 소결거동)

  • Park, Dong-Wook;Kim, Hye-Seong;Kwon, Young-Sam;Cho, Kwon-Koo;Lim, Su-Gun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.19 no.2
    • /
    • pp.117-121
    • /
    • 2012
  • Tool steels serve a large range of applications including hot and cold workings of metals and injection mouldings of plastics or light alloys. The high speed steels (HSS) are specifically used as cutting tools and wear parts because it has high strength, wear resistance and hardness along with appreciable toughness and fatigue resistance. From the view of HSS microstructure, it can be described as metallic matrix composites formed by a ferrous with a dispersion of hard and wear resistant carbides. The experimental specimens were manufactured using the PIM with T42 powders (50~80 vol.%) and polymer (20~50 vol.%). The green parts were debinded in n-hexane solution at $60^{\circ}C$ for 8 hours and thermal debinded at an $N_2-H_2$ mixed gas atmosphere for 8 hours. Specimens were sintered in high vacuum ($10^{-5}$ Torr) and various temperatures.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF