• 제목/요약/키워드: Tool steels

검색결과 147건 처리시간 0.029초

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

STD 61 공구강과 상대재인 핫 프레스 가공용 Al-9%Si 코팅강의 고온 미끄럼 마모 (High Temperature Wear of STD 61 Tool Steels Sliding Against Al-9%Si Coated Steels Used for Hot Press Forming)

  • 최병영;김홍기
    • 대한금속재료학회지
    • /
    • 제47권10호
    • /
    • pp.667-674
    • /
    • 2009
  • High temperature wear of STD 61 tool steels sliding against the Al-9%Si coated steels used for hot press forming has been studied in comparison with that of the tool steels sliding against the uncoated steels. Wear tests have been performed using a pin-on-disc configuration under an applied normal load of 50N for 20 min with heating the coated and uncoated steels up to 800$^{\circ}C$. It was found on the worn surface of the STD 61 tool steels sliding against the Al-9%Si coated steels that the formation of the glazed layers containing Al transferred from the coated tribopair may contribute to a reduction of the coefficient of friction, and detachment in part occur due to delamination wear, resulting in higher specific wear rate. On the other hand the Fe-oxide wear debris entrapped on the softer surface of the uncoated steels can act as a tribosurface, leading to decreased adhesive wear of the STD 61 tool steels, resulting in a lower specific wear rate.

고합금 공구강의 최적 오스테나이트 처리 온도 결정 (Determination of Optimal Austenitizing Temperature in High-Alloyed Tool Steels)

  • 박동성;전중환;이민하;이석재
    • 열처리공학회지
    • /
    • 제30권4호
    • /
    • pp.156-163
    • /
    • 2017
  • In the present study, we investigated the optimal austenitizing temperature of high-alloyed tool steels from an industrial point of view. Austenitizing temperatures for manufacturing 25 commercial tool steels were surveyed with their alloy compositions. The relationship between the austenitizing temperatures and the critical equilibrium temperatures by thermodynamic-based calculation was analyzed and a correlation was found. Based on the austenitizing temperatures of 25 commercial tool steels and the thermodynamic calculation results, we proposed a simple equation to predict an optimal austenitizing temperature to achieve superior mechanical properties of high-alloyed tool steels. The applicability of the proposed equation was experimentally validated with a new developed tool steel.

냉각인발된 쾌삭강의 외경선삭시 칩-공구 마찰 및 전단 특성 (Chip-Tool Friction and Shear Characteristics of Cold Drawn Free Machining Steels in Turning)

  • 이영문;조삼규;최수준;송태성;박태준
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.198-203
    • /
    • 1999
  • In this study, chip-tool friction and shear characteristics of cold drawn free machining steels in turning were assessed. To do this, a newly developed equivalent oblique cutting model was adopted. And for comparison with those of free machining steels, chip-tool friction and shear characteristics of conventional carbon steels were also investigated. The Pb-S free machining steel shows superior machinability to others. In case of the Bi-S free machining steel, the shear stress and the specific friction energy are relatively lower than those of conventional carbon steels, but its shear strain is relatively high, so it does not show any remarkable improvement of machinability.

  • PDF

레이저 빔을 이용한 공구강의 표면 경화 (Surface Hardening of Tool Steels Using Laser Beam)

  • 남기석;이구현
    • 열처리공학회지
    • /
    • 제10권1호
    • /
    • pp.71-78
    • /
    • 1997
  • This work was to investigate suitable tool steels for hardening using laser beam, and was studied on carbon tool steels and alloyed tool steels such as STC3 steel, STS3 steel, STD11 steel and SKH51 steel. The surface hardness of HV700-1000 and the hardening depth of 2-2.5mm were obtained on STC3 steel and STS3 steel, and HV800-1000 was obtained on SKH51 steel, but STD11 steel was not enough. Except STD11 steel, all steels used in this study can be hardened by laser quenching or laser rapid melting.

  • PDF

질화처리강의 열물성치측정 (Measurement of the Thermal Physical Properties of Nitrided Steels)

  • 손병진;이관수;이흥주;김성근;김호준
    • 대한설비공학회지:설비저널
    • /
    • 제14권4호
    • /
    • pp.275-284
    • /
    • 1985
  • The thermophysical property values were determined and compared with each other according to the tine of surface treatment. The diffusivity values were obtained by the flash method, and the specific heat values were measured by the differential scanning density. The thermal conductivity values were calculated from the values of the thermal diffusivity, specific heat, and density. The nitrided steels were the structural carbon steels, carbon tool steels, alloy tool steels, and high speed tool steels.

  • PDF

급속응고한 고합금 고속도 공구강의 미세조직 특성 (Microstructural Characteristics of Rapidly Solidified Highly Alloyed High Speed Tool Steels)

  • 이인우;김명호
    • 한국주조공학회지
    • /
    • 제15권3호
    • /
    • pp.242-251
    • /
    • 1995
  • Highly alloyed high speed tool steels(ASP steels) were rapidly solidified by melt spinning process, and the microstructures of melt spun tool steel ribbons were examined by optical microscopy and transmission electron microscopy with energy dispersive x-ray spectroscope. The microstructure of melt spun tool steel ribbon was found to be consisted of ${\delta}-ferrite$ cells surrounded by austenite and V-rich MC carbides. The size of ${\delta}-ferrite$ cells and intercellular MC carbides were about $0.4{\mu}m$ or less and 30nm or less, respectively. From the melt spun tool steel ribbons, only the MC type carbide phase was observed, instead of $M_2C$, $M_{23}C_6$ and $M_6C$ carbides which were generally observed in other rapidly solidified high speed steels. Such a change in type of carbide phase formed could be attributed to the increase in alloying content of vanadium and carbon. However, changes in microsturcture of melt spun tool steels with alloying content of cobalt, vanadium and carbon were not observed.

  • PDF

철강재료의 다이아몬드절삭에 있어서 단속절삭가공법의 적용에 의한 공구마모억제 (Control of Tool Wear in Diamond Cutting of Steels by Intermittent Cutting Method)

  • 송영찬;근진건태랑;박천홍;삼협준도
    • 한국정밀공학회지
    • /
    • 제25권6호
    • /
    • pp.40-46
    • /
    • 2008
  • Ultraprecision cutting of steels with geometrically defined single crystal diamond tools is handicapped by excessive tool wear. This paper presents a new approach to suppress the wear of single crystal diamond tool in cutting of steels. In general, it is said that the wear of diamond tool is caused by chemically reactive wear under high temperature and high pressure conditions. In order to suppress such chemical reactions, the time of contact between the diamond tool and the steel work in cutting was controlled by employing the intermittent cutting method such as fly-cutting. Series of intermittent cutting experiments have been carried out to control the tool-work contact time by changing one cycle of cutting length and cutting speed. The experimental results were shown that the tool wear was much dependent on the contact time regardless of the cutting speed, and that the wear was much suppressed by reducing the tool-work contact time. It is expected that the steels can be successfully cut with a single crystal diamond tool by controlling the contact time.

공구강의 가스질화시 질화특성에 미치는 초기조직의 영향 (The Influence of Initial Structure on the Nitriding characteristics of Tool Steels in gasnitriding)

  • 김영희;김명준
    • 열처리공학회지
    • /
    • 제7권4호
    • /
    • pp.318-327
    • /
    • 1994
  • According to conventional nitriding of tool steels, it was very difficult to produce a high surface hardness. This study has been conducted to investigate the influence of initial structures on the nitriding characteristics of tool steels in gas-nitrided for the improvement in surface hardness. The specimens (SACM645, STD61 steels) have been quenching and tempering at various temperature and then gas-nitrided for 30, 45 and 60hr at 500, 530 and $550^{\circ}C$ respectively in gasatmosphere of 30%$NH_3-70%N_2$ As hardness of initial structure was higher, the nitriding layer was deeper and hardness of the nitriding layer was higher. Deeper nitriding layers was due to higher diffusion rate by fine initial microstructure. Also the reason of high surface hardness was associated with formation of dispersed fine carbonitrides of nitrides.

  • PDF

ESC 공정으로 제작된 금형강의 가공특성연구 (Machining Characteristics of Tool Steels Manufactured by Electro Slag Casting Process)

  • 김정운;김봉준;이득우;문영훈
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1120-1126
    • /
    • 2002
  • Machining characteristics of tool steels manufactured by electro slag casting process has been investigated in this study. For the estimation of machinability, turning and drilling tests are carried out. The chip shapes at various velocities are investigated for the comparison of turning workabilities of tool steels because the chip shapes reflect characteristics of cutting resistance. In case of drilling test, feed motor currents measured by a hall sensor are used as a measure for the drilling resistance. The machining characteristics of the tool steels are strongly correlated with tensile properties, such as tensile strength, hardness, and ductility. In case of turning workability, it was found to be favoured by the higher tensile strength, while the opposite is true far the drilling workability. The electro-slag casted materials show better turning workability in the viewpoint of chip shapes and, the quenching-tempered electro-slag casted material has relatively better drilling machinability than that of the annealed one.