• Title/Summary/Keyword: Tool shape

Search Result 1,366, Processing Time 0.037 seconds

금속절삭시 CHIP 생성기구 및 절삭온도 예측을 위한 유한요소해석에 관한 연구

  • 황준;남궁석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.22-27
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting. This paper introduces some effects, such constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angles and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool, cutting temperature. Under the usual [lane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and rake angles. In this analysis, various cutting speeds and depth of cut are adopted. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Cutting temperature and Thermal behavior. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

Design of Ultrasonic Vibration Tool Horn for Micromachining Using FEM (유한요소법을 이용한 초음파 진동 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Kim, Kwang-Lae;Kim, Kang-Eun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.63-70
    • /
    • 2008
  • Conical horn is used in many high frequency ultrasonic horns, to achieve a longitudinal vibration mode across a wide ultrasonic tool horn output surface. Modal analysis is method for designing tuned ultrasonic tool horn and for the prediction natural frequency of ultrasonic tool horn vibration mode. The design of ultrasonic horn is based on prototype estimate obtained by FEM analysis. The FEM simulated ultrasonic tool horn is built and characterized experimentally through laser vibrometer and electrical impedance analysis. In this paper, FEM analysis is developed to predict the natural frequency of ultrasonic tool horn and use of in the optimal design of ultrasonic horn shape.

Analysis on the Surface Accuracy in according to Geometry of End Mill (엔드밀의 형상에 따른 가공정밀도 해석)

  • 고성림;이상규;김용현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.1001-1004
    • /
    • 2000
  • As tools for machining precision components, end mills and ball end mills are widely used. For the end mills have longer cylindrical shape comparing diameter, liable to deflect and induce deterioration of surface roughness. Tool geometry parameters and cutting process have complex relations with each other. So, It is hard to determine hew to select optimal tool geometry. So, to improve the stiffness, relationship between cutting process and tool geometry must be studied. In this study, relations between grinding wheel geometry, setting condition and tool geometry are revealed. For the purpose of studying relations between each parameter, the equivalent diameter of tool has been calculated assuming tool as a simple beam. By the various cutting simulations and experiments, tool geometry and cutting process has been studied.

  • PDF

Characteristics of tool wear in cutting glass fiber reinforced plastics : the effect of physical properties of tool materials (유리섬유 강화 플라스틱(GERP) 절삭시의 공구마멸 특성)

  • 이원평;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 1988
  • A turning (facing) test on Glass Fiber Reinforced Plastics was performed with several tool materials, e.g., cemented carbides, cermet and ceramic, and the wear patterns and wear rate were analyzed to clarify the relation between physical(mechanical) properties and flank wear of cutting tool. The main results are obtained as follows: (1) When cutting speed is increased, the flank wear in every tool material grows the abnormal wear in the shape of triangle at a certain speed, i.e., a critical speed. (2) When cutting speed is increased, the wear rate in experimental tool material starts to increase remarkably at a critical speed. (3) The thermal conductivity among the properties of the tool material and the thermal crack coefficient of it are almost in proportion to the critical speed. (4) The order of performance in tool materials for cutting GFRP is K 10, M10, P20, TiC, CB.

  • PDF

Analysis on the Precision Machining in End Milling Operation by Simulating Surface Generation (엔드밀 가공시 표면형성 예측을 통한 정밀가공에 관한 연구)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.229-236
    • /
    • 1999
  • The surface, generated by end milling operation, is deteriorated by tool runout, vibration, tool wear and tool deflection, etc. Among them, the effect of tool deflection on surface accuracy is analyzed. Surface generation model for the prediction of the topography of machined srufaces has been developed based on cutting mechanism and cutting tool geometry. This model accounts for not only the ideal geometrical surface, but also the deflection of tool due to cutting force. For the more accurate prediction of cutting force, flexible end mill model is used to simulate cutting process. Computer simulation has shown the feasibility of the surface generation system. Using developed simulation system, the relations between the shape of end mill and cutting conditions are analyzed.

  • PDF

An Optimal Tool Selection Method for Pocket Machining (포켓형상가공을 위한 최적공구 선정방법)

  • Kyoung, Young-Min;Cho, Kyu-Kab;Jun, Cah-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.49-58
    • /
    • 1997
  • In process planning for pocket machining, the selection of tool size, tool path, overlap distance, and the calculation of machining time are very important factors to obtain the optimal process planning result. Among those factors, the tool size is the most important one because the others depend on tool size. And also, it is not easy to determine the optimal tool size even though the shape of pocket is simple. Therefore, the optimal selection of tool size is the most essential task in process planning for machining a pocket. This paper presents a method for selecting optimal toos in pocket machining. The branch and bound method is applied to select the optimal tools which minimize the machining time by using the range of feasible tools and the breadth-first search.

  • PDF

Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes (수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Kim, Dae-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

Morphometric analysis of the inter-mastoid triangle for sex determination: Application of statistical shape analysis

  • Sobhani, Farshad;Salemi, Fatemeh;Miresmaeili, Amirfarhang;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.51 no.2
    • /
    • pp.167-174
    • /
    • 2021
  • Purpose: Sex determination can be done by morphological analysis of different parts of the body. The mastoid region, with its anatomical location at the skull base, is ideal for sex identification. Statistical shape analysis provides a simultaneous comparison of geometric information on different shapes in terms of size and shape features. This study aimed to investigate the geometric morphometry of the inter-mastoid triangle as a tool for sex determination in the Iranian population. Materials and Methods: The coordinates of 5 landmarks on the mastoid process on the 80 cone-beam computed tomographic images(from individuals aged 17-70 years, 52.5% female) were registered and digitalized. The Cartesian x-y coordinates were acquired for all landmarks, and the shape information was extracted from the principal component scores of generalized Procrustes fit. The t-test was used to compare centroid size. Cross-validated discriminant analysis was used for sex determination. The significance level for all tests was set at 0.05. Results: There was a significant difference in the mastoid size and shape between males and females(P<0.05). The first 2 components of the Procrustes shape coordinates explained 91.3% of the shape variation between the sexes. The accuracy of the discriminant model for sex determination was 88.8%. Conclusion: The application of morphometric geometric techniques will significantly impact forensic studies by providing a comprehensive analysis of differences in biological forms. The results demonstrated that statistical shape analysis can be used as a powerful tool for sex determination based on a morphometric analysis of the inter-mastoid triangle.